, various digestive symptoms have been frequently reported in patients infected with the virus. In this study, we aimed to further investigate the prevalence and outcomes of COVID-19 patients with digestive symptoms. METHODS: In this descriptive, cross-sectional, multicenter study, we enrolled confirmed patients with COVID-19 who presented to 3 hospitals from January 18, 2020, to February 28, 2020. All patients were confirmed by real-time polymerase chain reaction and were analyzed for clinical characteristics, laboratory data, and treatment. Data were followed up until March 18, 2020. RESULTS: In the present study, 204 patients with COVID-19 and full laboratory, imaging, and historical data were analyzed. The average age was 52.9 years (SD 6 16), including 107 men and 97 women. Although most patients presented to the hospital with fever or respiratory symptoms, we found that 103 patients (50.5%) reported a digestive symptom, including lack of appetite (81 [78.6%] cases), diarrhea (35 [34%] cases), vomiting (4 [3.9%] cases), and abdominal pain (2 [1.9%] cases). If lack of appetite is excluded from the analysis (because it is less specific for the gastrointestinal tract), there were 38 total cases (18.6%) where patients presented with a gastrointestinal-specific symptom, including diarrhea, vomiting, or abdominal pain. Patients with digestive symptoms had a significantly longer time from onset to admission than patients without digestive symptoms (9.0 days vs 7.3 days). In 6 cases, there were digestive symptoms, but no respiratory symptoms. As the severity of the disease increased, digestive symptoms became more pronounced. Patients with digestive symptoms had higher mean liver enzyme levels, lower monocyte count, longer prothrombin time, and received more antimicrobial treatment than those without digestive symptoms. DISCUSSION: We found that digestive symptoms are common in patients with COVID-19. Moreover, these patients have a longer time from onset to admission, evidence of longer coagulation, and higher liver enzyme levels. Clinicians should recognize that digestive symptoms, such as diarrhea, are commonly among the presenting features of COVID-19 and that the index of suspicion may need to be raised earlier in at-risk patients presenting with digestive symptoms. However, further large sample studies are needed to confirm these findings.
Objectives The purpose of this study was to observe the imaging characteristics of the novel coronavirus pneumonia. Methods Sixty-three confirmed patients were enrolled from December 30, 2019 to January 31, 2020. High-resolution CT (HRCT) of the chest was performed. The number of affected lobes, ground glass nodules (GGO), patchy/punctate ground glass opacities, patchy consolidation, fibrous stripes and irregular solid nodules in each patient's chest CT image were recorded. Additionally, we performed imaging follow-up of these patients. Results CT images of 63 confirmed patients were collected. M/F ratio: 33/30. The mean age was 44.9 ± 15.2 years. The mean number of affected lobes was 3.3 ± 1.8. Nineteen (30.2%) patients had one affected lobe, five (7.9%) patients had two affected lobes, four (6.3%) patients had three affected lobes, seven (11.1%) patients had four affected lobes while 28 (44.4%) patients had 5 affected lobes. Fifty-four (85.7%) patients had patchy/punctate ground glass opacities, 14 (22.2%) patients had GGO, 12 (19.0%) patients had patchy consolidation, 11 (17.5%) patients had fibrous stripes and 8 (12.7%) patients had irregular solid nodules. Fifty-four (85.7%) patients progressed, including single GGO increased, enlarged and consolidated; fibrous stripe enlarged, while solid nodules increased and enlarged. Conclusions Imaging changes in novel viral pneumonia are rapid. The manifestations of the novel coronavirus pneumonia are diverse. Imaging changes of typical viral pneumonia and some specific imaging features were observed. Therefore, we need to strengthen the recognition of image changes to help clinicians to diagnose quickly and accurately. Key Points • High-resolution CT (HRCT) of the chest is critical for early detection, evaluation of disease severity and follow-up of patients with the novel coronavirus pneumonia. • The manifestations of the novel coronavirus pneumonia are diverse and change rapidly.• Radiologists should be aware of the various features of the disease and temporal changes.
With more than 1,800,000 cases and 110,000 deaths globally, COVID-19 is one of worst infectious disease outbreaks in history. This paper provides a critical review of the available evidence regarding the lessons learned from the Chinese experience with COVID-19 prevention and management. The steps that have led to a near disappearance of new cases in China included rapid sequencing of the virus to establish testing kits, which allowed tracking of infected persons in and out of Wuhan. In addition, aggressive quarantine measures included the R ESUM EAvec plus de 1 800 000 cas et 110 000 d ecès dans le monde, la COVID-19 est l'une des pires eclosions de maladies infectieuses de l'histoire. Ce document pr esente un examen critique des constats disponibles concernant les leçons tir ees de l'exp erience chinoise en matière de pr evention et de gestion de la COVID-19. Les mesures qui ont conduit à la quasi-disparition des nouveaux cas en Chine comprenaient le s equençage rapide du virus pour etablir des trousses de tests, ce qui a permis de suivre les personnes infect ees à l'int erieur et à Since mid-December 2019, there has been a worldwide outbreak of coronavirus disease (COVID)e19, caused by SARS-CoV-2 (formerly 2019-nCoV or HCoV-19) and first detected in Wuhan, China. The incubation period is 1-14 days (mean 5-6 days) in most cases, but can be as long as 24 days. 1 The most commonly seen characteristics of COVID-19 are fever, cough, and abnormal chest computed tomography. 2,3 At present, the Chinese chrysanthemum bat is thought to be the origin of SARS-CoV-2, based on sequence homology of 96% between SARS-CoV-2 and Bat-CoV-RaTG13. 4,5 The pangolin has been proposed as an intermediate host, but this has not been confirmed. 6,7 Human-to-human transmission of SARS-CoV-2 occurs mainly via respiratory droplets, 1 direct contact, 1 asymptomatic transmission, 8,9 and intrafamilial transmission. 3 SARS-CoV-2 can affect any demographic, including senior citizens, children, and pregnant women. 3,10 According to the World Health Organisation (WHO),
To analyse the high-resolution computed tomography (HRCT) early imaging features and the changing trend of coronavirus disease 2019 (COVID-19) pneumonia. Materials and Methods: Forty-six patients with COVID-19 pneumonia who had an isolated lesion on the first positive CT were enrolled in this study. The following parameters were recorded for each lesion: sites, sizes, location (peripheral or central), attenuation (ground-glass opacity or consolidation), and other abnormalities (supply pulmonary artery dilation, air bronchogram, interstitial thickening, etc.). The follow-up CT images were compared with the previous CT scans, and the development of the lesions was evaluated. Results: The lesions tended to be peripheral and subpleural. All the lesions exhibited ground-glass opacity with or without consolidation. A higher proportion of supply pulmonary artery dilation (89.13 % [41/46]) and air bronchogram (69.57 % [32/46]) were found. Other findings included thickening of the intralobular interstitium and a halo sign of ground glass around a solid nodule. Cavitation, calcification or lymphadelopathy were not observed. The reticular patterns were noted from the 14 days after symptoms onset in 7 of 20 patients (45 %). At 22-31 days, the lesions were completely absorbed only in 2 of 7 patients (28.57 %). Conclusion:The typical early CT features of COVID-19 pneumonia are ground-glass opacity, and located peripheral or subpleural location, and with supply pulmonary artery dilation. Reticulation was evident after the 2nd week and persisted in half of patients evaluated in 4 weeks after the onset. Long-term follow-up is required to determine whether the reticulation represents irreversible fibrosis.
The coronavirus disease 2019 (COVID-19) triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) erupted in Hubei Province of China in December 2019 and has become a pandemic. Severe COVID-19 patients who suffer from acute respiratory distress syndrome (ARDS) and multi-organ dysfunction have high mortality. Several studies have shown that this is closely related to the cytokine release syndrome (CRS), often loosely referred to as cytokine storm. IL-6 is one of the key factors and its level is positively correlated with the severity of the disease. The molecular mechanisms for CRS in COVID-19 are related to the effects of the S-protein and N-protein of the virus and its ability to trigger NF-κB activation by disabling the inhibitory component IκB. This leads to activation of immune cells and the secretion of proinflammatory cytokines such as IL-6 and TNF-α. Other mechanisms related to IL-6 include its interaction with GM-CSF and interferon responses. The pivotal role of IL-6 makes it a target for therapeutic agents and studies on tocilizumab are already ongoing. Other possible targets of treating CRS in COVID-19 include IL-1β and TNF-α. Recently, reports of a CRS like illness called multisystem inflammatory syndrome in children (MIS-C) in children have surfaced, with a variable presentation which in some cases resembles Kawasaki disease. It is likely that the immunological derangement and cytokine release occurring in COVID-19 cases is variable, or on a spectrum, that can potentially be governed by genetic factors. Currently, there are no approved biological modulators for the treatment of COVID-19, but the urgency of the pandemic has led to numerous clinical trials worldwide. Ultimately, there is great promise that an anti-inflammatory modulator targeting a cytokine storm effect may prove to be very beneficial in reducing morbidity and mortality in COVID-19 patients.
Little is known of the patterns of expression of ACE2 and TMPRSS2 or the clinical characteristics of COVID-19 in patients with COVID-19 and colorectal cancer. We found in both bulk and single-cell RNA-seq profiles that ACE2 and TMPRSS2 were expressed at high levels on tumor and normal colorectal epithelial tissues. Clinically, patients with colorectal cancer and COVID-19 were more likely to have lymphopenia, higher respiratory rate, and high hypersensitive C-reactive protein levels than matched patients with COVID-19 but without cancer. These results suggest that patients with colorectal cancer may be particularly susceptible to SARS-CoV-2 infection. Further mechanistic studies are needed to support our findings.
Our results show that HA blocks NO-induced apoptosis and dedifferentiation of articular chondrocytes by modulation of DeltaPsim and PKCalpha.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.