Fault-tolerant capability greatly promoted the application of multiphase machines on safety-critical occasions, and fault-tolerant control strategies are required to suppress the torque ripples. Based on the generalised symmetrical components (SCs) theory, a general expression of the independent SCs is derived during the fault-tolerant operation of symmetrical multiphase machines in this study, and coefficients of the four basic rotating components in the general expressions are calculated for specific open-circuit conditions. Then the bidirectional rotating proportional-integral controllers are designed to control all the rotating components in each SC. Considering control loops for all the independent SCs, an enhanced rotor fieldoriented control fault-tolerant strategy is proposed for symmetrical multiphase induction machines (IMs) with any phase number m. Furthermore, additional rotating current controllers in the first SC control loop are added to reduce the low-order current harmonics during the fault-tolerant operation. Experimental evaluations in terms of the transient, dynamic and harmonic performances on both five-phase and nine-phase IM drive platforms are provided to verify the effectiveness of the proposed fault-tolerant strategy.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.