In this paper, we present a parallel framework based on MPI for a large dataset to extract power spectrum features of EEG signals so as to improve the speed of brain signal processing. At present, the Welch method has been wildly used to estimate the power spectrum. However, the traditional Welch method takes a lot of time especially for the large dataset. In view of this, we added the MPI into the traditional Welch method and developed it into a reusable master-slave parallel framework. As long as the EEG data of any format are converted into the text file of a specified format, the power spectrum features can be extracted quickly by this parallel framework. In the proposed parallel framework, the EEG signals recorded by a channel are divided into N overlapping data segments. Then, the PSD of N segments are computed by some nodes in parallel. The results are collected and summarized by the master node. The final PSD results of each channel are saved in the text file, which can be read and analyzed by Microsoft Excel. This framework can be implemented not only on the clusters but also on the desktop computer. In the experiment, we deploy this framework on a desktop computer with a 4-core Intel CPU. It took only a few minutes to extract the power spectrum features from the 2.85 GB EEG dataset, seven times faster than using Python. This framework makes it easy for users, who do not have any parallel programming experience in constructing the parallel algorithms to extract the EEG power spectrum.
In order to improve the recognition rate of the biometric identification system, the features of each unimodal biometric are often combined in a certain way. However, there are some mutually exclusive redundant features in those combined features, which will degrade the identification performance. To solve this problem, this paper proposes a novel multimodal biometric identification system for face-iris recognition.It is based on binary particle swarm optimization. The face features are extracted by 2D Log-Gabor and Curvelet transform, while iris features are extracted by Curvelet transform. In order to reduce the complexity of the feature-level fusion, we propose a modified chaotic binary particle swarm optimization (MCBPSO) algorithm to select features. It uses kernel extreme learning machine (KELM) as a fitness function and chaotic binary sequences to initialize particle swarms. After the global optimal position (Gbest) is generated in each iteration, the position of Gbest is varied by using chaotic binary sequences, which is useful to realize chaotic local search and avoid falling into the local optimal position. The experiments are conducted on CASIA multimodal iris and face dataset from Chinese Academy of Sciences.The experimental results demonstrate that the proposed system can not only reduce the number of features to one tenth of its original size, but also improve the recognition rate up to 99.78%. Compared with the unimodal iris and face system, the recognition rate of the proposed system are improved by 11.56% and 2% respectively. The experimental results reveal its performance in the verification mode compared with the existing state-of-the-art systems. The proposed system is satisfactory in addressing face-iris multimodal biometric identification.
At present, iris recognition has been widely used as a biometrics-based security enhancement technology. However, in some application scenarios where a long-distance camera is used, due to the limitations of equipment and environment, the collected iris images cannot achieve the ideal image quality for recognition. To solve this problem, we proposed a modified sparrow search algorithm (SSA) called chaotic pareto sparrow search algorithm (CPSSA) in this paper. First, fractional-order chaos is introduced to enhance the diversity of the population of sparrows. Second, we introduce the Pareto distribution to modify the positions of finders and scroungers in the SSA. These can not only ensure global convergence, but also effectively avoid the local optimum issue. Third, based on the traditional contrast limited adaptive histogram equalization (CLAHE) method, CPSSA is used to find the best clipping limit value to limit the contrast. The standard deviation, edge content, and entropy are introduced into the fitness function to evaluate the enhancement effect of the iris image. The clipping values vary with the pictures, which can produce a better enhancement effect. The simulation results based on the 12 benchmark functions show that the proposed CPSSA is superior to the traditional SSA, particle swarm optimization algorithm (PSO), and artificial bee colony algorithm (ABC). Finally, CPSSA is applied to enhance the long-distance iris images to demonstrate its robustness. Experiment results show that CPSSA is more efficient for practical engineering applications. It can significantly improve the image contrast, enrich the image details, and improve the accuracy of iris recognition.
In order to improve the accuracy of brain signal processing and accelerate speed meanwhile, we present an optimal and intelligent method for large dataset classification application in this paper. Optimized Extreme Learning Machine (OELM) is introduced in ElectroCorticoGram (ECoG) feature classification of motor imaginary-based brain-computer interface (BCI) system, with common spatial pattern (CSP) to extract the feature. When comparing it with other conventional classification methods like SVM and ELM, we exploit several metrics to evaluate the performance of all the adopted methods objectively. The accuracy of the proposed BCI system approaches approximately 92.31% when classifying ECoG epochs into left pinky or tongue movement, while the highest accuracy obtained by other methods is no more than 81%, which substantiates that OELM is more efficient than SVM, ELM, etc. Moreover, the simulation results also demonstrate that OELM will significantly improve the performance with p value being far less than 0.001. Hence, the proposed OELM is satisfactory in addressing ECoG signal.
No abstract
With the advent of the big data era, it is vital to explore the information involved in this type of data. With the continuous development of higher education, the K-means clustering algorithm is widely used to analyze students’ academic data. However, a significant drawback of this method is that it is seriously affected by initial centroids of clustering and easily falls into local optima. Motivated by the fact that the chaos and swarm intelligence algorithm are frequently combined, we propose an approach for data clustering by Memristive Chaotic Sparrow Search Algorithm (MCSSA) in this paper. First, we introduce a memristive chaotic system, which has a property of conditional symmetry. We use the sequences generated by the memristive chaotic system to initialize the location of the sparrows. Then, MCSSA is applied before K-means for finding the optimal locations in the search space. Those locations are used as initial cluster centroids for the K-means algorithm to find final data clusters. Finally, the improved clustering algorithm is applied to the analysis of college students’ academic data, demonstrating the value and viability of the approach suggested in this paper. Through empirical research, it is also confirmed that this method can be promoted and applied.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers