Background: Since being first reported in Wuhan, China, in December 8, 2019, the outbreak of the novel coronavirus, now known as COVID-19, has spread globally. Some case studies regarding the characteristics and outcome of patients with COVID-19 have been published recently. We conducted a meta-analysis to evaluate the risk factors of COVID-19. Methods: Medline, SinoMed, EMBASE, and Cochrane Library were searched for clinical and epidemiological studies on confirmed cases of COVID-19. Results: The incidence of fever, cough, fatigue, and dyspnea symptoms were 85.6 % (95CI 81.3-89.9 %), 65.7 % (95CI 60.1-71.4 %), 42.4 % (95CI 32.2-52.6 %) and 21.4 % (95CI 15.3-27.5 %). The prevalence of diabetes was 7.7 % (95CI 6.1-9.3 %), hypertension was 15.6 % (95CI 12.6-18.6 %), cardiovascular disease was 4.7 % (95CI 3.1-6.2 %), and malignancy was 1.2 % (95CI 0.5-1.8 %). The complications, including ARDS risk, ranged from 5.6-13.2 %, with the pooled estimate of ARDS risk at 9.4 %, ACI at 5.8 % (95CI 0.7-10.8 %), AKI at 2.1 % (95CI 0.6-3.7 %), and shock at 4.7 % (95CI 0.9-8.6 %). The risks of severity and mortality ranged from 12.6 to 23.5% and from 2.0 to 4.4 %, with pooled estimates at 18.0 and 3.2 %, respectively. The percentage of critical cases in diabetes and hypertension was 44.5 % (95CI 27.0-61.9 %) and 41.7 % (95CI 26.4-56.9 %), respectively. Conclusion: Fever is the most common symptom in patients with COVID-19. The most prevalent comorbidities are hypertension and diabetes which are associated with the severity of COVID-19. ARDS and ACI may be the main obstacles for patients to treatment recovery. The case severe rate and mortality is lower than that of SARS and MERS.
Phosphorylation of the neurofilament proteins of high and medium relative molecular mass, as well as of the Alzheimer's tau protein, is thought to be catalysed by a protein kinase with Cdc2-like substrate specificity. We have purified a novel Cdc2-like kinase from bovine brain capable of phosphorylating both the neurofilament proteins and tau. The purified enzyme is a heterodimer of cyclin-dependent kinase 5 (Cdk5) and a novel regulatory subunit, p25 (ref. 8). When overexpressed and purified from Escherichia coli, p25 can activate Cdk5 in vitro. Unlike Cdk5, which is ubiquitously expressed in human tissue, the p25 transcript is expressed only in brain. A full-length complementary DNA clone showed that p25 is a truncated form of a larger protein precursor, p35, which seems to be the predominant form of the protein in crude brain extract. Cdk5/p35 is the first example of a Cdc2-like kinase with neuronal function.
HBV may have another virion form in which the nucleic acid is composed of RNA, not DNA. The level of HBV RNA virion in serum may be associated with risk of HBV viral rebound after withdrawal of treatment, and therefore, a potential predictive biomarker to monitor the safe discontinuation of nucleot(s)ide analogues-therapy.
Understanding effects of chronic nicotine requires identifying the neurons and synapses whose responses to nicotine itself, and to endogenous acetylcholine, are altered by continued exposure to the drug. To address this problem, we developed mice whose ␣4 nicotinic receptor subunits are replaced by normally functioning fluorescently tagged subunits, providing quantitative studies of receptor regulation at micrometer resolution. Chronic nicotine increased ␣4 fluorescence in several regions; among these, midbrain and hippocampus were assessed functionally. Although the midbrain dopaminergic system dominates reward pathways, chronic nicotine does not change ␣4* receptor levels in dopaminergic neurons of ventral tegmental area (VTA) or substantia nigra pars compacta. Instead, upregulated, functional ␣4* receptors localize to the GABAergic neurons of the VTA and substantia nigra pars reticulata. In consequence, GABAergic neurons from chronically nicotine-treated mice have a higher basal firing rate and respond more strongly to nicotine; because of the resulting increased inhibition, dopaminergic neurons have lower basal firing and decreased response to nicotine. In hippocampus, chronic exposure to nicotine also increases ␣4* fluorescence on glutamatergic axons of the medial perforant path. In hippocampal slices from chronically treated animals, acute exposure to nicotine during tetanic stimuli enhances induction of long-term potentiation in the medial perforant path, showing that the upregulated ␣4* receptors in this pathway are also functional. The pattern of cell-specific upregulation of functional ␣4* receptors therefore provides a possible explanation for two effects of chronic nicotine: sensitization of synaptic transmission in forebrain and tolerance of dopaminergic neuron firing in midbrain.
Shape-changing hydrogels that can bend, twist, or actuate in response to external stimuli are critical to soft robots, programmable matter, and smart medicine. Shape change in hydrogels has been induced by global cues, including temperature, light, or pH. Here we demonstrate that specific DNA molecules can induce 100-fold volumetric hydrogel expansion by successive extension of cross-links. We photopattern up to centimeter-sized gels containing multiple domains that undergo different shape changes in response to different DNA sequences. Experiments and simulations suggest a simple design rule for controlled shape change. Because DNA molecules can be coupled to molecular sensors, amplifiers, and logic circuits, this strategy introduces the possibility of building soft devices that respond to diverse biochemical inputs and autonomously implement chemical control programs.
The cytoplasmic male sterility (CMS) phenotype in plants can be reversed by the action of nuclear-encoded fertility restorer (Rf) genes. The molecular mechanism involved in Rf gene-mediated processing of CMS-associated transcripts is unclear, as are the identities of other proteins that may be involved in the CMS-Rf interaction. In this study, we cloned the restorer gene Rf5 for Hong-Lian CMS in rice and studied its fertility restoration mechanism with respect to the processing of the CMS-associated transcript atp6-orfH79. RF5, a pentatricopeptide repeat (PPR) protein, was unable to bind to this CMSassociated transcript; however, a partner protein of RF5 (GRP162, a Gly-rich protein encoding 162 amino acids) was identified to bind to atp6-orfH79. GRP162 was found to physically interact with RF5 and to bind to atp6-orfH79 via an RNA recognition motif. Furthermore, we found that RF5 and GRP162 are both components of a restoration of fertility complex (RFC) that is 400 to 500 kD in size and can cleave CMS-associated transcripts in vitro. Evidence that a PPR protein interacts directly with a Gly-rich protein to form a subunit of the RFC provides a new perspective on the molecular mechanisms underlying fertility restoration.
Aging is a natural consequence of a society developing process. Although many adults retain good hearing as they aging, hearing loss related with age-presbycusis which can vary in severity from mild to substantial is common among elderly persons. There are a number of pathophysiological processes underlying age-related changes in the auditory system as well as in the central nervous systems. Many studies have been dedicated to the illustration of risk factors accumulating presbycusis such as heritability, environment factors, medical conditions, free radical (reactive oxygen species, ROS) and damage of mitochondrial DNA. Left untreated, presbycusis can not only lead sufferers to reduced quality of life, isolation, dependence and frustration, but also affect the healthy people around. These can be partly corrected using hearing aids, but it is not enough, more and more strategies of treatment based on the findings associating with presbycusis should be added rather than using single hearing aids. We review here the pathophysiology; heritability, susceptibility genes and other risk factors including environmental, medical, especially free radical (ROS) and damage of mitochondrial DNA; and some strategies of treatment, as well as promising rehabilitations associating with presbycusis.
All inorganic perovskite nanocrystals (NCs) of CsPbX (X = Cl, Br, I, or their mixture) are regarded as promising candidates for high-performance light-emitting diode (LED) owing to their high photoluminescence (PL) quantum yield (QY) and easy synthetic process. However, CsPbX NCs synthesized by the existing methods, where oleic acid (OA) and oleylamine (OLA) are generally used as surface-chelating ligands, suffer from poor stability due to the ligand loss, which drastically deteriorates their PL QY, as well as dispersibility in solvents. Herein, the OA/OLA ligands are replaced with octylphosphonic acid (OPA), which dramatically enhances the CsPbX stability. Owing to a strong interaction between OPA and lead atoms, the OPA-capped CsPbX (OPA-CsPbX) NCs not only preserve their high PL QY (>90%) but also achieve a high-quality dispersion in solvents after multiple purification processes. Moreover, the organic residue in purified OPA-CsPbBr is only ∼4.6%, which is much lower than ∼29.7% in OA/OLA-CsPbBr. Thereby, a uniform and compact OPA-CsPbBr film is obtained for LED application. A green LED with a current efficiency of 18.13 cd A, corresponding to an external quantum efficiency of 6.5%, is obtained. Our research provides a path to prepare high-quality perovskite NCs for high-performance optoelectronic devices.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers