Using passive infrared sensors is a well-established technique of presence monitoring. While it can significantly reduce energy consumption, more savings can be made when utilising more modern sensor solutions coupled with machine learning algorithms. This paper proposes an improved method of presence monitoring, which can accurately derive the number of people in the area supervised with a low-cost and low-energy thermal imaging sensor. The method utilises U-Net-like convolutional neural network architecture and has a low parameter count, and therefore can be used in embedded scenarios. Instead of providing simple, binary information, it learns to estimate the occupancy density function with the person count and approximate location, allowing the system to become considerably more flexible. The tests show that the method compares favourably to the state of the art solutions, achieving significantly better results.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers