Heritable genetic variation is required for evolution, and while typically encoded within nuclear and organellar genomes, several groups of invertebrates harbour heritable microbes serving as additional sources of genetic variation. Hailing from the symbiont-rich insect order Hemiptera, pea aphids (Acyrthosiphon pisum) possess several heritable symbionts with roles in host plant utilization, thermotolerance and protection against natural enemies. As pea aphids vary in the numbers and types of harboured symbionts, these bacteria provide heritable and functionally important variation within field populations. In this study, we quantified the cytoplasmically inherited genetic variation contributed by symbionts within North American pea aphids. Through the use of Denaturing Gradient Gel Electrophoresis (DGGE) and 454 amplicon pyrosequencing of 16S rRNA genes, we explored the diversity of bacteria harboured by pea aphids from five populations, spanning three locations and three host plants. We also characterized strain variation by analysing 16S rRNA, housekeeping and symbiont-associated bacteriophage genes. Our results identified eight species of facultative symbionts, which often varied in frequency between locations and host plants. We detected 28 cytoplasmic genotypes across 318 surveyed aphids, considering only the various combinations of secondary symbiont species infecting single hosts. Yet the detection of multiple Regiella insecticola, Hamiltonella defensa and Rickettsia strains, and diverse bacteriophage genotypes from H. defensa, suggest even greater diversity. Combined, these findings reveal that heritable bacteria contribute substantially to genetic variation in A. pisum. Given the costs and benefits of these symbionts, it is likely that fluctuating selective forces play a role in the maintenance of this diversity.
The importance of microbial facultative endosymbionts to insects is increasingly being recognized, but our understanding of how the fitness effects of infection are distributed across symbiont taxa is limited. In the pea aphid, some of the seven known species of facultative symbionts influence their host's resistance to natural enemies, including parasitoid wasps and a pathogenic fungus. Here we show that protection against this entomopathogen, Pandora neoaphidis, can be conferred by strains of four distantly related symbionts (in the genera Regiella, Rickettsia, Rickettsiella and Spiroplasma). They reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects. Pea aphids thus obtain protection from natural enemies through association with a wider range of microbial associates than has previously been thought. Providing resistance against natural enemies appears to be a particularly common way for facultative endosymbionts to increase in frequency within host populations.
SignificanceCicadas are dependent on the essential bacterial symbionts Sulcia and Hodgkinia. The symbiont genomes are extremely streamlined for provisioning of essential amino acids and other nutrients. In some cicada lineages, Hodgkinia genomes are fragmented into numerous minicircles, which may represent a critical stage of genomic erosion close to collapse. What would happen subsequently? Our survey of the Japanese cicada diversity revealed that while Sulcia is conserved among all species, the majority of them have lost Hodgkinia and instead harbor yeast-like fungal associates. The fungal symbionts are phylogenetically intermingled with cicada-parasitizing Ophiocordyceps fungi, indicating recurrent symbiont replacements by entomopathogens in cicadas and providing insights into the mechanisms underlying the parasitism-symbiosis evolutionary continuum, compensation of symbiont genome erosion, and diversification of host-symbiont associations.
Nitrogen acquisition is a major challenge for herbivorous animals, and the repeated origins of herbivory across the ants have raised expectations that nutritional symbionts have shaped their diversification. Direct evidence for N provisioning by internally housed symbionts is rare in animals; among the ants, it has been documented for just one lineage. In this study we dissect functional contributions by bacteria from a conserved, multi-partite gut symbiosis in herbivorous Cephalotes ants through in vivo experiments, metagenomics, and in vitro assays. Gut bacteria recycle urea, and likely uric acid, using recycled N to synthesize essential amino acids that are acquired by hosts in substantial quantities. Specialized core symbionts of 17 studied Cephalotes species encode the pathways directing these activities, and several recycle N in vitro. These findings point to a highly efficient N economy, and a nutritional mutualism preserved for millions of years through the derived behaviors and gut anatomy of Cephalotes ants.
The microbiome can significantly impact host phenotypes and serve as an additional source of heritable genetic variation. While patterns across eukaryotes are consistent with a role for symbiotic microbes in host macroevolution, few studies have examined symbiont-driven host evolution or the ecological implications of a dynamic microbiome across temporal, spatial or ecological scales. The pea aphid, Acyrthosiphon pisum, and its eight heritable bacterial endosymbionts have served as a model for studies on symbiosis and its potential contributions to host ecology and evolution. But we know little about the natural dynamics or ecological impacts of the heritable microbiome of this cosmopolitan insect pest. Here we report seasonal shifts in the frequencies of heritable defensive bacteria from natural pea aphid populations across two host races and geographic regions. Microbiome dynamics were consistent with symbiont responses to host-level selection and findings from one population suggested symbiont-driven adaptation to seasonally changing parasitoid pressures. Conversely, symbiont levels were negatively correlated with enemy-driven mortality when measured across host races, suggesting important ecological impacts of host race microbiome divergence. Rapid drops in symbiont frequencies following seasonal peaks suggest microbiome instability in several populations, with potentially large costs of 'superinfection' under certain environmental conditions. In summary, the realization of several laboratory-derived, a priori expectations suggests important natural impacts of defensive symbionts in host-enemy eco-evolutionary feedbacks. Yet negative findings and unanticipated correlations suggest complexities within this system may limit or obscure symbiont-driven contemporary evolution, a finding of broad significance given the widespread nature of defensive microbes across plants and animals.
Insect guts are often colonized by multispecies microbial communities that play integral roles in nutrition, digestion and defence. Community composition can differ across host species with increasing dietary and genetic divergence, yet gut microbiota can also vary between conspecific hosts and across an individual's lifespan. Through exploration of such intraspecific variation and its correlates, molecular profiling of microbial communities can generate and test hypotheses on the causes and consequences of symbioses. In this study, we used 454 pyrosequencing and TRFLP to achieve these goals in an herbivorous ant, Cephalotes varians, exploring variation in bacterial communities across colonies, populations and workers reared on different diets. C. varians bacterial communities were dominated by 16 core species present in over two-thirds of the sampled colonies. Core species comprised multiple genotypes, or strains and hailed from ant-specific clades containing relatives from other Cephalotes species. Yet three were detected in environmental samples, suggesting the potential for environmental acquisition. In spite of their prevalence and long-standing relationships with Cephalotes ants, the relative abundance and genotypic composition of core species varied across colonies. Diet-induced plasticity is a likely cause, but only pollen-based diets had consistent effects, altering the abundance of two types of bacteria. Additional factors, such as host age, genetics, chance or natural selection, must therefore shape natural variation. Future studies on these possibilities and on bacterial contributions to the use of pollen, a widespread food source across Cephalotes, will be important steps in developing C. varians as a model for studying widespread social insect-bacteria symbioses.
Bacterial endosymbionts that provide nutrients to hosts often have genomes that are extremely stable in structure and gene content. In contrast, the genome of the endosymbiont has fractured into multiple distinct lineages in some species of the cicada genus To better understand the frequency, timing, and outcomes of lineage splitting throughout this cicada genus, we sampled cicadas over three field seasons in Chile and performed genomics and microscopy on representative samples. We found that a single ancestral lineage has split at least six independent times in over the last 4 million years, resulting in complexes of between two and six distinct lineages per host. Individual genomes in these symbiotic complexes differ dramatically in relative abundance, genome size, organization, and gene content. Each lineage retains a small set of core genes involved in genetic information processing, but the high level of gene loss experienced by all genomes suggests that extensive sharing of gene products among symbiont cells must occur. In total, complexes that consist of multiple lineages encode nearly complete sets of genes present on the ancestral single lineage and presumably perform the same functions as symbionts that have not undergone splitting. However, differences in the timing of the splits, along with dissimilar gene loss patterns on the resulting genomes, have led to very different outcomes of lineage splitting in extant cicadas.
Many insects harbour facultative endosymbiotic bacteria, often more than one type at a time. These symbionts can have major effects on their hosts' biology, which may be modulated by the presence of other symbiont species and by the host's genetic background. We investigated these effects by transferring two sets of facultative endosymbionts (one Hamiltonella and Rickettsia, the other Hamiltonella and Spiroplasma) from naturally doubleinfected pea aphid hosts into five novel host genotypes of two aphid species. The symbionts were transferred either together or separately. We then measured aphid fecundity and susceptibility to an entomopathogenic fungus. The pathogen-protective phenotype conferred by the symbionts Rickettsia and Spiroplasma varied among host genotypes, but was not influenced by co-infection with Hamiltonella. Fecundity varied across single and double infections and between symbiont types, aphid genotypes and species. Some host genotypes benefit from harbouring more than one symbiont type.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers