It is known that small and large numbers facilitate left/right respectively (the SNARC effect). Recently, it has been proposed that numerical magnitude is just one example of a range of quantities, which have a common cognitive/neural representation. To investigate this proposition, response congruency effects were explored for stimuli which differed according to their: (a) numerical size, (b) physical size, (c) luminance, (d) conceptual size and (e) auditory intensity. In a series of experiments, groups of undergraduate participants made two-alternative forced choice discriminations with their left or right hands. There were clear interactions between magnitude and responding hand whereby right hand responses were faster for stimuli with (a) large numbers, (b) large physical size, (c) low luminance, and (d) a reference to large objects. There was no congruency effect for the auditory stimuli. The data demonstrate that the response congruency effect observed for numbers also occurs for a variety of other non-numerical visual quantities. These results support models of general magnitude representation and suggest that the association between magnitude and the left/right sides of space may not be related to culture and/or directional reading habits.
Background/Objectives
Vision-based speed of processing (VSOP) training is a promising cognitive intervention for older adults. However, it is unknown whether VSOP training can affect cognitive processing in individuals at high risk for dementia. Here, we examined cognitive and neural effects of VSOP training in older adults with amnestic mild cognitive impairment (aMCI) and contrasted those effects with an active control (mental leisure activities; MLA).
Design
A randomized single-blinded controlled pilot trial.
Setting
An academic medical center.
Participants
Twenty-one participants with aMCI.
Intervention
A 6-week computerized VSOP training.
Measurements
Multiple cognitive processing measures, instrumental activities of daily living (IADL), and two key resting state neural networks regulating cognitive processing: central executive network (CEN) and default mode network (DMN).
Results
We found that, compared to MLA control, VSOP training led to significant improvements in trained (processing speed and attention: F1,19 = 6.61, Partial η2 = 0.26, p = .019) and untrained cognitive domains (working memory: F1,19 = 7.33, Partial η2 = 0.28, p = .014; IADL: F1,19 = 5.16, Partial η2 = 0.21, p = .035), and protective maintenance in DMN (F1, 9 = 14.63, Partial η2 = 0.62, p = .004). Additionally, VSOP training, but not MLA, resulted in a significant improvement in CEN connectivity (Z = −2.37, p = .018).
Conclusion
We identified both target and transfer effects of VSOP training and revealed links between VSOP training and two key neural networks associated with aMCI. These findings highlight the potential of VSOP training to slow cognitive decline in aMCI. Further delineation of mechanisms underlying VSOP-induced plasticity is necessary to understand in what populations and conditions such training may be most effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.