Approximately 70‐75% of women will have vulvovaginal candidosis (VVC) at least once in their lifetime. In premenopausal, pregnant, asymptomatic and healthy women and women with acute VVC, Candida albicans is the predominant species. The diagnosis of VVC should be based on clinical symptoms and microscopic detection of pseudohyphae. Symptoms alone do not allow reliable differentiation of the causes of vaginitis. In recurrent or complicated cases, diagnostics should involve fungal culture with species identification. Serological determination of antibody titres has no role in VVC. Before the induction of therapy, VVC should always be medically confirmed. Acute VVC can be treated with local imidazoles, polyenes or ciclopirox olamine, using vaginal tablets, ovules or creams. Triazoles can also be prescribed orally, together with antifungal creams, for the treatment of the vulva. Commonly available antimycotics are generally well tolerated, and the different regimens show similarly good results. Antiseptics are potentially effective but act against the physiological vaginal flora. Neither a woman with asymptomatic colonisation nor an asymptomatic sexual partner should be treated. Women with chronic recurrent Candida albicans vulvovaginitis should undergo dose‐reducing maintenance therapy with oral triazoles. Unnecessary antimycotic therapies should always be avoided, and non‐albicans vaginitis should be treated with alternative antifungal agents. In the last 6 weeks of pregnancy, women should receive antifungal treatment to reduce the risk of vertical transmission, oral thrush and diaper dermatitis of the newborn. Local treatment is preferred during pregnancy.
In recent years, the genus Malassezia has been reclassified based on molecular data. In addition to M. furfur, M. pachydermatis and M. sympodialis, four new species, M. globosa, M. obtusa, M. restricta and M. slooffiiae, have been described. However, apart from their lipid dependence, little is known about the metabolism and nutritional requirements of all the seven species. Further to recent studies, 10 hydrophilic emulsifiers (HLB > 10) were examined in an agar diffusion test to determine their growth-promoting effect on reference strains of the different Malassezia species. Polyethylene glycol (PEG) 7 glyceryl monoalcanoate (Cetiol HE). PEG-glyceryl stearate (Tagat S2) and macrogol-50 stearate (Myrj 53) were metabolized by all strains, while PEG-35 castor oil (Cremophor EL) was metabolized only by M. furfur. The latter observation is due to a different metabolism of castor oil and its main component, ricinoleic acid (12-hydroxy oleic acid), which may also give an insight into the pathogenesis of diseases that are associated with Malassezia spp. As hydroxy fatty acids are important in maintaining the epidermal structure and function, their metabolism specifically by M. furfur might clarify some clinical aspects of pityriasis versicolor. Apart from this speculation, use of Cremophor EL, with splitting of esculin as an additional key character, improves the distinction of the species M. furfur, M. slooffiae and M. sympodialis.
A new minimal medium consisting only of L-tryptophan (L-Trp) and a lipid source induced formation of brown pigmentation only in the species Malassezia furfur, which diffuses into the agar. Strains of the species M. sympodialis and M. pachydermatis failed to grow on this medium. On mDixon medium, however, after replacement of peptone by L-Trp, growth of all three Malassezia species was achieved. Under these conditions pigment production was observed with all M. furfur strains tested, although the results for M. pachydermatis strains were inconsistent. M. sympodialis strains showed no pigment production. On the minimal medium pigmentogenesis was induced in M. furfur by only 0.01 g% tryptophan; the pH optimum was pH 5. In all M. furfur strains, alternative amino nitrogen sources given concurrently with Trp suppressed pigmentogenesis. Furthermore, there were differences in the optimal temperature among the individual M. furfur strains. CBS 7019, CBS 6000 and CBS 6001 failed to produce pigment at 37 degrees C. The extract of the culture exhibited remarkable fluorescence, and several indole derivatives with a broad spectrum of colours were detected. This finding may have an impact on the clinical appearance of pityriasis versicolor, a very common skin disease caused by lipophilic yeasts of the genus Malassezia. We hypothesize that in pityriasis versicolor metabolic adaptation of Malassezia yeasts to altered nitrogen conditions on superficial skin might be of patho-physiological importance. Tryptophan as an inducer of pigmentogenesis probably accumulates during excessive sweating, a well-known manifestation of pityriasis versicolor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.