Converging evidence from electrophysiological, physiological and anatomical studies suggests that abnormalities in the synchronized oscillatory activity of neurons may have a central role in the pathophysiology of schizophrenia. Neural oscillations are a fundamental mechanism for the establishment of precise temporal relationships between neuronal responses that are in turn relevant for memory, perception and consciousness. In patients with schizophrenia, the synchronization of beta- and gamma-band activity is abnormal, suggesting a crucial role for dysfunctional oscillations in the generation of the cognitive deficits and other symptoms of the disorder. Dysfunctional oscillations may arise owing to anomalies in the brain's rhythm-generating networks of GABA (gamma-aminobutyric acid) interneurons and in cortico-cortical connections.
Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, novel methods of time series analysis have been developed for the examination of task- and performance-related oscillatory activity and its synchronization. Studies employing these advanced techniques revealed that synchronization of oscillatory responses in the beta- and gamma-band is involved in a variety of cognitive functions, such as perceptual grouping, attention-dependent stimulus selection, routing of signals across distributed cortical networks, sensory-motor integration, working memory, and perceptual awareness. Here, we review evidence that certain brain disorders, such as schizophrenia, epilepsy, autism, Alzheimer's disease, and Parkinson's are associated with abnormal neural synchronization. The data suggest close correlations between abnormalities in neuronal synchronization and cognitive dysfunctions, emphasizing the importance of temporal coordination. Thus, focused search for abnormalities in temporal patterning may be of considerable clinical relevance.
Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies.
Neural oscillations and their synchronization may represent a versatile signal to realize flexible communication within and between cortical areas. By now, there is extensive evidence to suggest that cognitive functions depending on coordination of distributed neural responses, such as perceptual grouping, attention-dependent stimulus selection, subsystem integration, working memory, and consciousness, are associated with synchronized oscillatory activity in the theta-, alpha-, beta-, and gamma-band, suggesting a functional mechanism of neural oscillations in cortical networks. In addition to their role in normal brain functioning, there is increasing evidence that altered oscillatory activity may be associated with certain neuropsychiatric disorders, such as schizophrenia, that involve dysfunctional cognition and behavior. In the following article, we aim to summarize the evidence on the role of neural oscillations during normal brain functioning and their relationship to cognitive processes. In the second part, we review research that has examined oscillatory activity during cognitive and behavioral tasks in schizophrenia. These studies suggest that schizophrenia involves abnormal oscillations and synchrony that are related to cognitive dysfunctions and some of the symptoms of the disorder. Perspectives for future research will be discussed in relationship to methodological issues, the utility of neural oscillations as a biomarker, and the neurodevelopmental hypothesis of schizophrenia.
Fueled by developments in computational neuroscience, there has been increasing interest in the underlying neuro-computational mechanisms of psychosis. One successful approach involves predictive coding and Bayesian inference. Here, inferences regarding the current state of the world are made by combining prior beliefs with incoming sensory signals. Mismatches between prior beliefs and incoming signals constitute prediction errors that drive new learning. Psychosis has been suggested to result from a decreased precision in the encoding of prior beliefs relative to the sensory data, thereby garnering maladaptive inferences. Here, we review the current evidence for aberrant predictive coding and discuss challenges for this canonical predictive coding account of psychosis. For example, hallucinations and delusions may relate to distinct alterations in predictive coding, despite their common co-occurrence. More broadly, some studies implicate weakened prior beliefs in psychosis, and others find stronger priors. These challenges might be answered with a more nuanced view of predictive coding. Different priors may be specified for different sensory modalities and their integration, and deficits in each modality need not be uniform. Furthermore, hierarchical organization may be critical. Altered processes at lower levels of a hierarchy need not be linearly related to processes at higher levels (and vice versa). Finally, canonical theories do not highlight active inference – the process through which the effects of our actions on our sensations are anticipated and minimized. It is possible that conflicting findings might be reconciled by considering these complexities, portending a framework for psychosis more equipped to deal with its many manifestations.
In recent years, numerous studies have tested the relevance of neural oscillations in neuropsychiatric conditions, highlighting the potential role of changes in temporal coordination as a pathophysiological mechanism in brain disorders. In the current review, we provide an update on this hypothesis because of the growing evidence that temporal coordination is essential for the context and goal-dependent, dynamic formation of large-scale cortical networks. We shall focus on issues that we consider particularly promising for a translational research program aimed at furthering our understanding of the origins of neuropsychiatric disorders and the development of effective therapies. We will focus on schizophrenia and autism spectrum disorders (ASDs) to highlight important issues and challenges for the implementation of such an approach. Specifically, we will argue that deficits in temporal coordination lead to a disruption of functional large-scale networks, which in turn can account for several specific dysfunctions associated with these disorders.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.