Create low power, higher performance circuits with shorter design times using this practical guide to asynchronous design. This practical alternative to conventional synchronous design enables performance close to full-custom designs with design times that approach commercially available ASIC standard cell flows. It includes design trade-offs, specific design examples, and end-of-chapter exercises. Emphasis throughout is placed on practical techniques and real-world applications, making this ideal for circuit design students interested in alternative design styles and system-on-chip circuits, as well as circuit designers in industry who need new solutions to old problems.
This paper describes an investigation of potential advantages and pitfalls of applying an asynchronous design methodology to an advanced microprocessor architecture. A prototype complex instruction set length decoding and steering unit was implemented using self-timed circuits. [The Revolving Asynchronous Pentium ® Processor Instruction Decoder (RAPPID) design implemented the complete Pentium II ® 32-bit MMX instruction set.] The prototype chip was fabricated on a 0.25-CMOS process and tested successfully. Results show significant advantages-in particular, performance of 2.5-4.5 instructions per nanosecond-with manageable risks using this design technology. The prototype achieves three times the throughput and half the latency, dissipating only half the power and requiring about the same area as the fastest commercial 400-MHz clocked circuit fabricated on the same process.
This paper describes an investigation of potential advantages and risks of applying an aggressive asynchronous design methodology to Intel Architecture. RAPPID ("Revolving Asynchronous Pentium® Processor Instruction Decoder"), a prototype IA32 instruction length decoding and steering unit, was implemented using self-timed techniques. RAPPID chip was fabricated on a 0.25µ CMOS process and tested successfully. Results show significant advantages-in particular, performance of 2.5-4.5 instructions/nS-with manageable risks using this design technology. RAPPID achieves three times the throughput and half the latency, dissipating only half the power and requiring about the same area as an existing 400MHz clocked circuit.
Resilient designs offer the promise to remove increasingly large margins due to process, voltage, and temperature variations and take advantage of average-case data. However, proposed synchronous resilient schemes have either suffered from metastability or require modifying the architecture to add replaybased logic that recovers from timing errors, which leads to high timing error penalties and poses a design challenge in modern processors. This paper presents an asynchronous bundled-data resilient template called Blade that is robust to metastability issues, requires no replay-based logic, and has low timing error penalties. The template is supported by an automated design flow that synthesizes synchronous RTL designs to gate-level asynchronous Blade designs. The benefits of this flow are illustrated on Plasma, a 3-stage OpenCore MIPS CPU. Our results demonstrate that a nominal area overhead of the asynchronous template of less than 10% leads to a 19% performance boost over the synchronous design due to average-case data and a 30-40% improvement when synchronous PVT margins are considered. EDL
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.