Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data.
Scat-detection dogs have been used to locate feces of rare and elusive species across tropical biomes. However their detection efficiency in relation to human observers has rarely been evaluated. In this study, we evaluated the ability of a scat detection dog to locate feces in comparison with human researchers. Human researchers and a scat detection dog surveyed for deer (Mazama spp.) feces in dense ombrofilous Atlantic forest in the Paranapiacaba continuum, SP, Brazil. A controlled experiment was used to assess the maximum effective perpendicular distance from a transect search line that the dog could detect a Mazama spp fecal sample. Results from a linear regression model revealed that the maximum effective perpendicular distance from a transect search line that the dog could detect a scat was 7.2 m. The detection success from our surveys in the Atlantic forest was zero for humans and 0.15 samples/ha or 0.20 samples/km walked for the dog team. Our results demonstrated the importance of scat-detection dogs for non invasive sampling and provide data relevant for the design of future studies
Deer species included in the genus Mazama descend from two different clades that experienced a strong evolutionary convergence in morphology and behaviour when they adapted to Neotropical forests. We would expect that circadian activity rhythms also converged according to habitat features or responded to temporal niche segregation in sympatric species. We used camera trapping in four study areas, representing three main biomes in Brazil, together with data taken from the literature, to analyse activity patterns of five Mazama species in four biomes in South America. Our results show that clade assignment was the main predictor of diurnal versus nocturnal activity, thus suggesting a phylogenetic constraint rather than any other ecological influence on circadian activity. We discuss how the evolutionary history of both lineages may have influenced their activity patterns.
Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non‐detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non‐governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer‐reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non‐detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio‐temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large‐scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data.
Biological invasion is one of the main threats to native biodiversity. For a species to become invasive, it must be voluntarily or involuntarily introduced by humans into a nonnative habitat. Mammals were among first taxa to be introduced worldwide for game, meat, and labor, yet the number of species introduced in the Neotropics remains unknown. In this data set, we make available occurrence and abundance data on mammal species that (1) transposed a geographical barrier and (2) were voluntarily or involuntarily introduced by humans into the Neotropics. Our data set is composed of 73,738 historical and current georeferenced records on alien mammal species of which around 96% correspond to occurrence data on 77 species belonging to eight orders and 26 families. Data cover 26 continental countries in the Neotropics, ranging from Mexico and its frontier regions (southern Florida and coastal‐central Florida in the southeast United States) to Argentina, Paraguay, Chile, and Uruguay, and the 13 countries of Caribbean islands. Our data set also includes neotropical species (e.g., Callithrix sp., Myocastor coypus, Nasua nasua) considered alien in particular areas of Neotropics. The most numerous species in terms of records are from Bos sp. (n = 37,782), Sus scrofa (n = 6,730), and Canis familiaris (n = 10,084); 17 species were represented by only one record (e.g., Syncerus caffer, Cervus timorensis, Cervus unicolor, Canis latrans). Primates have the highest number of species in the data set (n = 20 species), partly because of uncertainties regarding taxonomic identification of the genera Callithrix, which includes the species Callithrix aurita, Callithrix flaviceps, Callithrix geoffroyi, Callithrix jacchus, Callithrix kuhlii, Callithrix penicillata, and their hybrids. This unique data set will be a valuable source of information on invasion risk assessments, biodiversity redistribution and conservation‐related research. There are no copyright restrictions. Please cite this data paper when using the data in publications. We also request that researchers and teachers inform us on how they are using the data.
Morphometric feces data are used to identify ungulates, but their effectiveness is questioned by numerous authors. Herein, we evaluated the efficiency of this tool in discriminating scat samples from Neotropical deer with sympatric distributions. We performed discriminant analysis of previously identified scat samples (n = 204). The accuracy of discriminant analysis (56-92%) was lower than the confidence limit established in this study in all sympatric combinations expected in these biomes. These results demonstrate serious limitations regarding the use of scat morphometry for species identification of Neotropical deer and reinforce the need to use noninvasive genetic techniques.
ABSTRACT. Demographic information is the basis for evaluating and planning conservation strategies for an endangered species. However, in numerous situations there are methodological or financial limitations to obtain such information for some species. The marsh deer, an endangered Neotropical cervid, is a challenging species to obtain biological information. To help achieve such aims, the study evaluated the applicability of camera traps to obtain demographic information on the marsh deer compared to the traditional aerial census method. Fourteen camera traps were installed for three months on the Capão da Cruz floodplain, in state of São Paulo, and ten helicopter flyovers were made along a 13-kilometer trajectory to detect resident marsh deer. In addition to counting deer, the study aimed to identify the sex, age group and individual identification of the antlered males recorded. Population estimates were performed using the capture-mark-recapture method with the camera trap data and by the distance sampling method for aerial observation data. The costs and field efforts expended for both methodologies were calculated and compared. Twenty independent photographic records and 42 sightings were obtained and generated estimates of 0.98 and 1.06 ind/km², respectively. In contrast to the aerial census, camera traps allowed us to individually identify branch-antlered males, determine the sex ratio and detect fawns in the population. The cost of camera traps was 78% lower but required 20 times more field effort. Our analysis indicates that camera traps present a superior cost-benefit ratio compared to aerial surveys, since they are more informative, cheaper and offer simpler logistics. Their application extends the possibilities of studying a greater number of populations in a long-term monitoring.KEYWORDS. Aerial survey, capture-recapture, distance sampling, population estimate, sex ratio.RESUMO. Avaliação da viabilidade do uso de armadilhas fotográficas para estimar parâmetros demográficos de Blastocerus dichotomus (Cetartiodactyla, Cervidae). Informações demográficas constituem a base para a avaliação e planejamento de estratégias de conservação de uma espécie ameaçada. No entanto, em muitas situações existem limitações metodológicas ou financeiras para a obtenção de tais informações para algumas espécies. O cervo-do-pantanal, um cervídeo neotropical ameaçado de extinção, é uma espécie desafiadora para obtenção de informações biológicas. Para suprir essa demanda, o presente trabalho avaliou a aplicabilidade das armadilhas fotográficas para obtenção de informações demográficas de cervo-do-pantanal em comparação com o tradicional método de censo aéreo. Na várzea Capão da Cruz, Estado de São Paulo, foram instaladas 14 armadilhas fotográficas durante três meses e realizados dez sobrevoos de helicóptero num trajeto de 13 km para detecção dos cervos-do-pantanal ali residentes. Além da contagem dos animais, objetivou-se identificar o sexo, a faixa etária e a identificação individual dos machos galhados registrados. As es...
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers