Controlled immune responses to infection and injury involve complex molecular signaling networks with coordinated and often opposing actions. Eicosanoids and related bioactive lipid mediators derived from polyunsaturated fatty acids constitute a major bioactive lipid network, which is among the most complex and challenging pathways to map in a physiological context. Eicosanoid signaling, similar to cytokine signaling and inflammasome formation, has been viewed as primarily a pro-inflammatory component of the innate immune response; however, recent advances in lipidomics have helped to elucidate unique eicosanoids and related docosanoids with anti-inflammatory and pro-resolution functions. This has advanced our overall understanding of the inflammatory response and its therapeutic implications. The induction of a pro- and anti-inflammatory eicosanoid storm through the activation of inflammatory receptors by infectious agents is reviewed.
Proinflammatory eicosanoids (prostaglandins and leukotrienes) and specialized pro-resolving mediators (SPM) are temporally regulated during infections. Here we show that human macrophage phenotypes biosynthesize unique lipid mediator signatures when exposed to pathogenic bacteria. E. coli and S. aureus each stimulate predominantly proinflammatory 5-lipoxygenase (LOX) and cyclooxygenase pathways (i.e., leukotriene B4 and prostaglandin E2) in M1 macrophages. These pathogens stimulate M2 macrophages to produce SPMs including resolvin D2 (RvD2), RvD5, and maresin-1. E. coli activates M2 macrophages to translocate 5-LOX and 15-LOX-1 to different subcellular locales in a Ca2+-dependent manner. Neither attenuated nor non-pathogenic E. coli mobilize Ca2+ or activate LOXs, rather these bacteria stimulate prostaglandin production. RvD5 is more potent than leukotriene B4 at enhancing macrophage phagocytosis. These results indicate that M1 and M2 macrophages respond to pathogenic bacteria differently, producing either leukotrienes or resolvins that further distinguish inflammatory or pro-resolving phenotypes.
In Study 1, an experiential factor divided into the following 3 factors when 3 or more factors were extracted: intuition, emotionality, and imagination; whereas a rational factor retained its coherence. In Study 2, an experiential but not a rational thinking style was positively associated with performance measures of creativity, humor, aesthetic judgment, and intuition and with self-report measures of empathy and social popularity. A rational thinking style was associated with several measures of adjustment. Both thinking styles were positively related to personal growth. Support was provided from several sources for the discriminant validity of the experiential facets. In a third study, the independence of the 2 thinking styles and of gender differences in self-reported data were verified by observations by others of participants' thinking styles. The importance of identifying facets of an experiential thinking style and of discovering previously unrecognized favorable attributes of this thinking style was discussed.
IntroductionThe aim of this study was to characterize interleukin 17 (IL-17) and interleukin 22 (IL-22) producing cells in peripheral blood (PB), skin, synovial fluid (SF) and synovial tissue (ST) in patients with psoriasis (Ps) and psoriatic arthritis (PsA).MethodsFlow cytometry was used to enumerate cells making IL-22 and IL-17, in skin and/or SF and PB from 11 patients with Ps and 12 patients with PsA; skin and PB of 15 healthy controls and SF from rheumatoid arthritis (RA) patients were used as controls. Expression of the interleukin 23 receptor (IL-23R) and chemokine receptors CCR4 and CCR6 was examined. Secretion of IL-17 and IL-22 was measured by ELISA. ST was analysed by immunohistochemical staining of IL-17 and IL-22.ResultsIncreased frequencies of IL-17+ and IL-22+ CD4+ T cells were seen in PB of patients with PsA and Ps. IL-17 secretion was significantly elevated in both PsA and Ps, whilst IL-22 secretion was higher in PsA compared to Ps and healthy controls. A higher proportion of the CD4+ cells making IL-17 or IL-22 expressed IL-23R and frequencies of IL-17+, CCR6+ and CCR4+ T cells were elevated in patients with Ps and those with PsA. In patients with PsA, CCR6+ and IL-23R + T cells numbers were elevated in SF compared to PB. Increased frequencies of IL-17+ and IL-22+ CD4+ T cells were demonstrated in Ps skin lesions. In contrast, whilst elevated frequencies of CD4+ IL-17+ cells were seen in PsA SF compared to PB, frequencies of CD4+ IL-22+ T cells were lower. Whereas IL-17 expression was equivalent in PsA, osteoarthritis (OA) and RA ST, IL-22 expression was higher in RA than either OA or PsA ST, in which IL-22 was strikingly absent.ConclusionsElevated frequencies of IL-17 and IL-22 producing CD4+ T cells were a feature of both Ps and PsA. However their differing distribution at disease sites, including lower frequencies of IL-22+ CD4+ T cells in SF compared to skin and PB, and lack of IL-22 expression in ST suggests that Th17 and Th22 cells have common, as well as divergent roles in the pathogenesis of Ps and PsA.
Local mediators orchestrate the host response to both sterile and infectious challenge and resolution. Recent evidence demonstrates that maresin sulfido‐conjugates actively resolve acute inflammation and promote tissue regeneration. In this report, we investigated self‐limited infectious exudates for novel bioactive chemical signals in tissue regeneration and resolution. By use of spleens from Escherichia coli infected mice, self‐resolving infectious exudates, human spleens, and blood from patients with sepsis, we identified 2 new families of potent molecules. Characterization of their physical properties and isotope tracking demonstrated that the bioactive structures contained a docosahexaenoate backbone and sulfido‐conjugated triene or tetraene double‐bond systems. Activated human phagocytes converted 17‐hydro(peroxy)‐4Z,7Z,10Z,13Z,15E,19Z‐docosahexaenoic acid to these bioactive molecules. Regeneration of injured planaria was accelerated with nanomolar amounts of 16‐glutathionyl, 17‐hydroxy‐4Z,7Z,10,12,14,19Z‐docosahexaenoic acid and 16‐cysteinylglycinyl, 17‐hydroxy‐4Z,7Z,10,12,14,19Z‐docosahexaenoic acid (Protectin sulfido‐conjugates) or 8‐glutathionyl, 7,17‐dihydroxy‐4Z,9, 11,13Z,15E,19Z‐docosahexaenoic acid and 8‐cysteinylglycinyl, 7,17‐dihydroxy‐4Z,9,11,13Z, 15E,19Z‐docosahexaenoic acid (Resolvin sulfido‐conjugates). Each protectin and resolvin sulfido‐conjugate dose dependently (0.1‐10 nM) stimulated human macrophage bacterial phagocytosis, phagolysosomal acidification, and efferocytosis. Together, these results identify 2 novel pathways and provide evidence for structural elucidation of new resolution moduli. These resolvin and protectin conjugates identified in mice and human infected tissues control host responses promoting catabasis.—Dalli, J., Ramon, S., Norris, P. C., Colas, R. A., Serhan, C. N. Novel proresolving and tissue‐regenerative resolvin and protectin sulfido‐conjugated pathways. FASEB J. 29, 2120‐2136 (2015). http://www.fasebj.org
Dietary fish oil omega‐3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), elicit cardioprotective and anti‐inflammatory effects through unresolved mechanisms. EPA and DHA may reduce arachidonic acid (AA) metabolism and pro‐inflammatory effects by competition and inhibition at multiple levels. Here, we report the effects of AA, EPA, and DHA supplementation on membrane incorporation, phospholipase A2 release, and eicosanoid production in RAW264.7 macrophages. Each PUFA supplemented increased by similar amounts in membrane phospholipids, while half of the increased AA and EPA were elongated to adrenic acid (AdA) and docosapentaenoic acid (DPA), respectively; and were subsequently released by PLA2 at levels comparable to AA. TLR‐4 stimulated COX‐2 AA production did not increase with AA supplementation and was inhibited by 20% and 50% after EPA and DHA supplementation, respectively. ATP stimulated COX‐1 AA production was inhibited to a greater extent by EPA and DHA; 5‐LOX AA metabolites increased 2‐fold with EPA and DHA supplementation, and 5‐LOX metabolized EPA and DHA to a greater extent than COX‐1/COX‐2. Altogether, AA, EPA and DHA supplementation decreased TLR‐4 stimulated AA COX‐2 prostanoid metabolism; increased the purinergic stimulated AA 5‐LOX/COX‐1 ratio; and significantly increased elongated PUFA levels that may be converted to novel mediators.
Aims: To develop a method to detect bacteria from environmental samples that are able to metabolize lignin. Methods and Results: A previously developed UV-vis assay method for lignin degradation activity has been developed for use as a spray assay on agar plates. Nine mesophilic strains were isolated using this method from woodland soil incubated in enrichment cultures containing wheat straw lignocellulose: four Microbacterium isolates, two Micrococcus isolates, Rhodococcus erythropolis (all Actinobacteria) and two Ochrobactrum isolates (Alphaproteobacteria). Three thermotolerant isolates were isolated from the same screening method applied at 45°C to samples of composted wheat straw from solid-state fermentation: Thermobifida fusca and two isolates related to uncharacterized species of Rhizobiales and Sphingobacterium (Bacteroidetes), the latter strain showing tenfold higher lignin degradation activity than other isolates. The isolated strains were able to depolymerize samples of size-fractionated high molecular weight and low molecular weight Kraft lignin, and produced low molecular weight metabolites oxalic acid and protocatechuic acid from incubations containing wheat straw lignocellulose. Conclusions: A new method for the isolation of bacteria able to metabolize lignin has been developed, which has been used to identify 12 bacterial isolates from environmental sources. The majority of isolates cluster into the Actinobacteria and the Alphaproteobacteria. Significance and Impact of the Study: Lignin-degrading bacterial strains could be used to convert lignin-containing feedstocks into renewable chemicals and to identify new bacterial lignin-degrading enzymes.
A new species of ferrous-iron-oxidizing, moderately thermophilic, acidophilic bacteria, Acidimicrobium ferrooxidans, has been described. Two isolates of the species differed only in the tendency of one, previously known as strain TH3, to grow in filaments. The chromosomal DNA base composition is between 67 and 69 mol% G + C. The capacity of this species to fix CO2 from air was greater than that of iron-oxidizing thermoacidophiles of the genus Sulfobacillus, which required an enhanced CO2 concentration for optimum autotrophic growth. Under air, ferrous iron oxidation in mixed cultures of A. ferrooxidans with either Sulfobacillus thermosulfidooxidans or Sulfobacillus acidophilus was more extensive than in pure cultures of these three strains. The greater part of ferrous iron oxidation in mixed cultures probably resulted from activity of the Sulfobacillus species, which possess a greater tolerance of ferric iron, and which presumably grew mixotrophically utilizing organic compounds from A. ferrooxidans.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers