This paper describes a method to estimate parametric motion models. Motivations for the use of such models are on one hand their efficiency, which has been demonstrated in numerous contexts such as estimation, segmentation, tracking and interpretation of motion, and on the other hand, their low computational cost compared to optical flow estimation. However, it is important to have the best accuracy for the estimated parameters, and to take into account the problem of multiple motion. We have therefore developed two robust estimators in a multiresolution framework. Numerical results support this approach, as validated by the use of these algorithms on complex sequences.
Abstract-We present a non-parametric regression method for denoising 3D image sequences acquired via fluorescence microscopy. The proposed method exploits the redundancy of the 3D+time information to improve the signal-to-noise ratio of images corrupted by PoissonGaussian noise. A variance stabilization transform is first applied to the image-data to remove the dependence between the mean and variance of intensity values. This preprocessing requires the knowledge of parameters related to the acquisition system, also estimated in our approach. In a second step, we propose an original statistical patchbased framework for noise reduction and preservation of space-time discontinuities. In our study, discontinuities are related to small moving spots with high velocity observed in fluorescence video-microscopy. The idea is to minimize an objective non-local energy functional involving spatiotemporal image patches. The minimizer has a simple form and is defined as the weighted average of input data taken in spatially-varying neighborhoods. The size of each neighborhood is optimized to improve the performance of the pointwise estimator. The performance of the algorithm (which requires no motion estimation) is then evaluated on both synthetic and real image sequences using qualitative and quantitative criteria.Index Terms-Video-microscopy, fluorescence, image sequence denoising, patch-based approach, Poisson noise, variance stabilization, adaptive estimation, energy minimization.
This paper considers the problem of action localization, where the objective is to determine when and where certain actions appear. We introduce a sampling strategy to produce 2D+t sequences of bounding boxes, called tubelets. Compared to state-of-the-art alternatives, this drastically reduces the number of hypotheses that are likely to include the action of interest. Our method is inspired by a recent technique introduced in the context of image localization. Beyond considering this technique for the first time for videos, we revisit this strategy for 2D+t sequences obtained from super-voxels. Our sampling strategy advantageously exploits a criterion that reflects how action related motion deviates from background motion.We demonstrate the interest of our approach by extensive experiments on two public datasets: UCF Sports and MSR-II. Our approach significantly outperforms the state-of-theart on both datasets, while restricting the search of actions to a fraction of possible bounding box sequences.
a b s t r a c tOptical flow estimation is one of the oldest and still most active research domains in computer vision. In 35 years, many methodological concepts have been introduced and have progressively improved performances, while opening the way to new challenges. In the last decade, the growing interest in evaluation benchmarks has stimulated a great amount of work. In this paper, we propose a survey of optical flow estimation classifying the main principles elaborated during this evolution, with a particular concern given to recent developments. It is conceived as a tutorial organizing in a comprehensive framework current approaches and practices. We give insights on the motivations, interests and limitations of modeling and optimization techniques, and we highlight similarities between methods to allow for a clear understanding of their behavior.
The estimation of dense velocity fields from image sequences is basically an ill-posed problem, primarily because the data only partially constrain the solution. It is rendered especially difficult by the presence of motion boundaries and occlusion regions which are not taken into account by standard regularization approaches. In this paper, we present a multimodal approach to the problem of motion estimation in which the computation of visual motion is based on several complementary constraints. It is shown that multiple constraints can provide more accurate flow estimation in a wide range of circumstances. The theoretical framework relies on bayesian estimation associated with global statistical models, namely, Markov Random Fields. The constraints introduced here aim to address the following issues: optical flow estimation while preserving motion boundaries, processing of occlusion regions, fusion between gradient and feature-based motion constraint equations. Deterministic relaxation algorithms are used to merge information and to provide a solution to the maximum a posteriori estimation of the unknown dense motion field. The algorithm is well suited to a multiresolution implementation which brings an appreciable speed-up as well as a significant improvement of estimation when large displacements are present in the scene. Experiments on synthetic and real world image sequences are reported.
Abstract-This paper is concerned with hierarchical Markov random field (MRF) models and their application to sonar image segmentation. We present an original hierarchical segmentation procedure devoted to images given by a high-resolution sonar. The sonar image is segmented into two kinds of regions: shadow (corresponding to a lack of acoustic reverberation behind each object lying on the sea-bed) and sea-bottom reverberation. The proposed unsupervised scheme takes into account the variety of the laws in the distribution mixture of a sonar image, and it estimates both the parameters of noise distributions and the parameters of the Markovian prior. For the estimation step, we use an iterative technique which combines a maximum likelihood approach (for noise model parameters) with a least-squares method (for MRF-based prior). In order to model more precisely the local and global characteristics of image content at different scales, we introduce a hierarchical model involving a pyramidal label field. It combines coarse-to-fine causal interactions with a spatial neighborhood structure. This new method of segmentation, called scale causal multigrid (SCM) algorithm, has been successfully applied to real sonar images and seems to be well suited to the segmentation of very noisy images. The experiments reported in this paper demonstrate that the discussed method performs better than other hierarchical schemes for sonar image segmentation.
The goal of this paper is to offer a structured synopsis of the problems in image motion computation and analysis, and of the methods proposed, exposing the underlying models and supporting assumptions. A sufficient number of pointers to the literature will be given, concentrating mostly on recent contributions. Emphasis will be on tile detection, measurement and segmentation of image motion. Tracking, and deformable motion isssues will be also addressed. Finally, a number of related questions which could require more investigations will be presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.