p53 functions as a transcription factor involved in cell-cycle control, DNA repair, apoptosis and cellular stress responses. However, besides inducing cell growth arrest and apoptosis, p53 activation also modulates cellular senescence and organismal aging. Senescence is an irreversible cell-cycle arrest that has a crucial role both in aging and as a robust physiological antitumor response, which counteracts oncogenic insults. Therefore, via the regulation of senescence, p53 contributes to tumor growth suppression, in a manner strictly dependent by its expression and cellular context. In this review, we focus on the recent advances on the contribution of p53 to cellular senescence and its implication for cancer therapy, and we will discuss p53's impact on animal lifespan. Moreover, we describe p53-mediated regulation of several physiological pathways that could mediate its role in both senescence and aging.
p63 inhibits metastasis. Here, we show that p63 (both TAp63 and ΔNp63 isoforms) regulates expression of miR-205 in prostate cancer (PCa) cells, and miR-205 is essential for the inhibitory effects of p63 on markers of epithelial-mesenchymal transition (EMT), such as ZEB1 and vimentin. Correspondingly, the inhibitory effect of p63 on EMT markers and cell migration is reverted by anti-miR-205. p53 mutants inhibit expression of both p63 and miR-205, and the cell migration, in a cell line expressing endogenous mutated p53, can be abrogated by pre-miR-205 or silencing of mutated p53. In accordance with this in vitro data, ΔNp63 or miR-205 significantly inhibits the incidence of lung metastasis in vivo in a mouse tail vein model. Similarly, one or both components of the p63/miR-205 axis were absent in metastases or colonized lymph nodes in a set of 218 human prostate cancer samples. This was confirmed in an independent clinical data set of 281 patients. Loss of this axis was associated with higher Gleason scores, an increased likelihood of metastatic and infiltration events, and worse prognosis. These data suggest that p63/miR-205 may be a useful clinical predictor of metastatic behavior in prostate cancer
The p53-family member TAp73 is a transcription factor that plays a key role in many biological processes. Here, we show that p73 drives the expression of microRNA (miR)-34a, but not miR-34b and -c, by acting on specific binding sites on the miR-34a promoter. Expression of miR-34a is modulated in parallel with that of TAp73 during in vitro differentiation of neuroblastoma cells and cortical neurons. Retinoid-driven neuroblastoma differentiation is inhibited by knockdown of either p73 or miR-34a. Transcript expression of miR-34a is significantly reduced in vivo both in the cortex and hippocampus of p73 −/− mice; miR-34a and TAp73 expression also increase during postnatal development of the brain and cerebellum when synaptogenesis occurs. Accordingly, overexpression or silencing of miR-34a inversely modulates expression of synaptic targets, including synaptotagmin-1 and syntaxin-1A. Notably, the axis TAp73/miR-34a/synaptotagmin-1 is conserved in brains from Alzheimer's patients. These data reinforce a role for TAp73 in neuronal development.cell death | neurodegeneration | Alzheimer disease T he p53-family member Trp73 is transcribed from two distinct promoters, resulting in isoforms containing or lacking the Nterminal TA domain, known as TAp73 (1, 2) and ΔNp73 (3), respectively; additionally, alternative 3′-splicing produces further variants (α, β, and so forth). In keeping with their sequence and structural similarities, TAp73 can mimic several p53 functions, including the transactivation of p21, Puma, and Bax, although p73 also has distinct transcriptional targets. Indeed, p73 −/− mice show developmental defects of the CNS; for example, congenital hydrocephalus, hippocampal dysgenesis, and defects of pheromone detection rather than the enhanced tumor susceptibility of p53 −/− mice (4). This development is not simply because of apoptosis, as the ectopic expression of p73 induces neurite outgrowth and expression of neuronal markers in neuroblastoma cell lines (5) and in primary oligodendrocytes (6).Several microRNAs (miRs) are regulated by p53 (7), although p73-dependent miRs have been less well studied. In particular, the miR-34 family (miR-34a to -c) has been shown to be a direct target of p53 (8-10). Ectopic expression of miR-34 mimics several p53 effects, although in a cell type-specific manner. In mice, miR-34a is ubiquitous with the highest expression in brain, and overexpression of miR-34a in neuroblastoma cell lines modulates neuronal-specific genes (11); miR-34b and -c are mainly in the lung (12).Because both p73 and miRs, including miR-34a, have been implicated in neuronal differentiation, we have investigated the possibility that p73 drives miR-34a expression using WT and p73-null mice. We demonstrate that miR-34a is transcriptionally regulated by TAp73 and that, in turn, miR-34a regulates the expression of a number of synaptic proteins, in particular synaptotagmin I and syntaxin 1A in cortical neurons. Moreover, neuronal architecture is disorganized in p73-null mice, and manipulation of miR-34a expressi...
The p53 family member TAp73 is a transcription factor that plays a key role in many biological processes, including neuronal development. In particular, we have shown that p73 drives the expression of miR-34a, but not miR-34b and c, in mouse cortical neurons. miR-34a in turn modulates the expression of synaptic targets including synaptotagmin-1 and syntaxin-1A. Here we show that this axis is retained in mouse ES cells committed to differentiate toward a neurological phenotype. Moreover, overexpression of miR-34a alters hippocampal spinal morphology, and results in electrophysiological changes consistent with a reduction in spinal function. Therefore, the TAp73/miR-34a axis has functional relevance in primary neurons. These data reinforce a role for miR-34a in neuronal development.cell death | synaptogenesis | neuronal differentiation | hippocampus M icro-RNAs (miRs) are one family of a number of small noncoding regulatory RNAs (1). They are initially transcribed as pri-miRs, which are processed by a nuclear RNase III enzyme to form stem-loop structured premiRs. The premiRs are transported to the cytosol, where another RNase III cleaves off double-stranded portions of the hairpin to generate a short-lived dsRNA of approximately 20 to 25 nt. This duplex becomes unwound, and one strand (forming the mature miR) becomes incorporated into miR-protein complexes. The mature miR within the miR-protein complex recognizes complementary sites in the 3′ UTR of target genes, resulting in translational inhibition or destabilization of the target mRNAs and down-regulation of the encoded protein. During development, a number of miRs show distinct expression patterns during maturation of the CNS (2). For example, microarray miR profiling of embryonic, early postnatal, and adult brain revealed differential changes in nine miRNAs, including miR-9 and -124, and the levels of both these miRs increase markedly during the transition from neuronal precursors to mature neurons. miR-124 has also been implicated in the differentiation of neuroblastoma cells induced by retinoic acid (3).p73 is a member of the p53 family. Two distinct promoters transcribe different isoforms containing-TAp73-or lackingΔNp73-the aminoterminal transactivation domain (4); furthermore, extensive alternative 3′-splicing produces additional isoforms (5, 6). Trp73-KO mice have significant developmental abnormalities of the central nervous system, including congenital hydrocephalus, hippocampal dysgenesis, and defects of pheromone detection (7). Isoform-selective KOs have shown both a distinct neuronal phenotype and altered tumor susceptibility (8, 9). p53 can regulate several miRs (10). Indeed, the miR-34 family (miR-34a-c) is a p53 target (11-13), which can mimic several p53 effects in a cell type-specific manner. miR-34a is ubiquitous with the highest expression in mouse brain, and overexpression of miR-34a in neuroblastoma cell lines modulates neuronal-specific genes (14), whereas miR-34b and c are mainly expressed in the lung (15). Less information is available ...
Activation of serine biosynthesis supports growth and proliferation of cancer cells. Human cancers often exhibit overexpression of phosphoglycerate dehydrogenase (PHGDH), the metabolic enzyme that catalyses the reaction that diverts serine biosynthesis from the glycolytic pathway. By refueling serine biosynthetic pathways, cancer cells sustain their metabolic requirements, promoting macromolecule synthesis, anaplerotic flux and ATP. Serine biosynthesis intersects glutaminolysis and together with this pathway provides substrates for production of antioxidant GSH. In human lung adenocarcinomas we identified a correlation between serine biosynthetic pathway and p73 expression. Metabolic profiling of human cancer cell line revealed that TAp73 activates serine biosynthesis, resulting in increased intracellular levels of serine and glycine, associated to accumulation of glutamate, tricarboxylic acid (TCA) anaplerotic intermediates and GSH. However, at molecular level p73 does not directly regulate serine metabolic enzymes, but transcriptionally controls a key enzyme of glutaminolysis, glutaminase-2 (GLS-2). p73, through GLS-2, favors conversion of glutamine in glutamate, which in turn drives the serine biosynthetic pathway. Serine and glutamate can be then employed for GSH synthesis, thus the p73-dependent metabolic switch enables potential response against oxidative stress. In knockdown experiment, indeed, TAp73 depletion completely abrogates cancer cell proliferation capacity in serine/glycine-deprivation, supporting the role of p73 to help cancer cells under metabolic stress. These findings implicate p73 in regulation of cancer metabolism and suggest that TAp73 influences glutamine and serine metabolism, affecting GSH synthesis and determining cancer pathogenesis.
Titanium dioxide (TiO2) is a natural oxide of the element titanium with low toxicity, and negligible biological effects. The classification as bio-inert material has given the possibility to normal-sized (>100 nm) titanium dioxide particles (TiO2-NPs) to be extensively used in food products and as ingredients in a wide range of pharmaceutical products and cosmetics, such as sunscreens and toothpastes. Therefore, human exposure may occur through ingestion and dermal penetration, or through inhalation route, during both the manufacturing process and use. In spite of the extensively use of TiO2-NPs, the biological effects and the cellular response mechanisms are still not completely elucidated and thus a deep understanding of the toxicological profile of this compound is required. The main mechanism underlining the toxicity potentially triggered by TiO2-NPs seems to involve the reactive oxygen species (ROS) production, resulting in oxidative stress, inflammation, genotoxicity, metabolic change and potentially carcinogenesis. The extent and type of cell damage strongly depend on chemical and physical characteristics of TiO2-NPs, including size, crystal structure and photo-activation. In this mini-review, we would like to discuss the latest findings on the adverse effects and on potential human health risks induced by TiO2-NPs exposure.
The long-term health risks of nanoparticles remain poorly understood, which is a serious concern given their prevalence in the environment from increased industrial and domestic use. The extent to which such compounds contribute to cellular toxicity is unclear, and although it is known that induction of oxidative stress pathways is associated with this process, the proteins and the metabolic pathways involved with nanoparticle-mediated oxidative stress and toxicity are largely unknown. To investigate this problem further, the effect of TiO2 on the HaCaT human keratinocyte cell line was examined. The data show that although TiO2 does not affect cell cycle phase distribution, nor cell death, these nanoparticles have a considerable and rapid effect on mitochondrial function. Metabolic analysis was performed to identify 268 metabolites of the specific pathways involved and 85 biochemical metabolites were found to be significantly altered, many of which are known to be associated with the cellular stress response. Importantly, the uptake of nanoparticles into the cultured cells was restricted to phagosomes, TiO2 nanoparticles did not enter into the nucleus or any other cytoplasmic organelle. No other morphological changes were detected after 24-h exposure consistent with a specific role of mitochondria in this response.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers