The coronavirus disease 2019 (COVID-19) pandemic is altering dynamics in academia, and people juggling remote work and domestic demands – including childcare – have felt impacts on their productivity. Female authors have faced a decrease in paper submission rates since the beginning of the pandemic period. The reasons for this decline in women’s productivity need to be further investigated. Here, we analyzed the influence of gender, parenthood and race on academic productivity during the pandemic period based on a survey answered by 3,345 Brazilian academics from various knowledge areas and research institutions. Productivity was assessed by the ability to submit papers as planned and to meet deadlines during the initial period of social isolation in Brazil. The findings revealed that male academics – especially those without children – are the least affected group, whereas Black women and mothers are the most impacted groups. These impacts are likely a consequence of the well-known unequal division of domestic labor between men and women, which has been exacerbated during the pandemic. Additionally, our results highlight that racism strongly persists in academia, especially against Black women. The pandemic will have long-term effects on the career progression of the most affected groups. The results presented here are crucial for the development of actions and policies that aim to avoid further deepening the gender gap in academia.
The Nucleus of the Solitary Tract (NTS) receives gustatory and visceral information from afferent fibers in the vagus and projects to the Nucleus Paragigantocellularis (PGi), among several other brain region. PGi sends excitatory fibers, mostly glutamatergic, to the Locus Coeruleus (LC). In turn, LC sends noradrenergic projections to many areas of the brain, including hippocampus (HIPP) and amygdala. Here we show that the NTS-PGi-LC-HIPP pathway is required for the memory consolidation of object recognition (OR). The inhibition of NTS, PGi or LC by microinfusion of the GABA(A) receptor agonist, muscimol, into each of these structures up to 3h after object recognition memory training impairs its consolidation as assessed in a retention test 24h later. The posttraining microinfusion of the β-blocker, timolol into CA1 mimics this effect. Intra-CA1 NA microinfusion does not alter retention per se, but reverses the disruptive effect of muscimol given into NTS, PGi or LC. This effect of NA is shared by a microinfusion of NMDA into LC. These results support the idea that the NTS-PGi-LC-CA1 pathway contributes to memory consolidation through a β-noradrenergic mechanism in CA1.
Previous studies addressed the antioxidant and anti-inflammatory role of compounds from green tea in different human tissues. Positive antioxidant and anti-inflammatory effects were described for brain tissues. Whether similar effects are observed in the skeletal muscle, green tea supplementation could be a strategy to reduce delayed onset muscle soreness resultant of exercise. Here we determine the effect of green tea extract supplementation on exercise-induced muscle soreness, muscle damage and oxidative stress. We performed a randomized triple blind placebo control study. Twenty non-trained men performed sessions of exercise to induce delayed onset muscle soreness in the triceps sural muscle group before and after 15 days of supplementation (500 mg/day) with green tea extract (n = 10) or a placebo (n = 10). Muscle soreness was evaluated using a visual scale. Blood samples were taken at different moments to determine serum blood markers of muscle damage, oxidative stress and antioxidant status. We found that exercise induced delayed onset muscle soreness. Supplementation reduced muscle damage but muscle soreness did not change. Plasma oxidative damage marker and antioxidant status did not show an effect of supplementation. As a conclusion, green tea extract supplementation did not reduce the sensation of delayed onset muscle soreness but reduces the marker of muscle damage after exercise. It suggests the green tea extract supplementation has positive effects on muscle recovery after strenuous exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.