The only known function of NAD(P)H oxidases is to produce reactive oxygen species (ROS). Skeletal muscles express three isoforms of NAD(P)H oxidases (Nox1, Nox2, and Nox4) that have been identified as critical modulators of redox homeostasis. Nox2 acts as the main source of skeletal muscle ROS during contractions, participates insulin signaling and glucose transport, and mediates the myocyte response to osmotic stress. Nox2 and Nox4 contribute to skeletal muscle abnormalities elicited by angiotensin II, muscular dystrophy, heart failure, and high fat diet. Our review addresses the expression and regulation of NAD(P)H oxidases with emphasis on aspects that are relevant to skeletal muscle. We also summarize: i) the most widely used NAD(P)H oxidases activity assays and inhibitors, and ii) studies that have defined Nox enzymes as protagonists of skeletal muscle redox homeostasis in a variety of health and disease conditions.
During the past several decades, the incidence of exertional heat stroke (EHS) has increased dramatically. Despite an improved understanding of this syndrome, numerous controversies still exist within the scientific and health professions regarding diagnosis, pathophysiology, risk factors, treatment, and return to physical activity. This review examines the following eight controversies: 1) reliance on core temperature for diagnosing and assessing severity of EHS; 2) hypothalamic damage induces heat stroke and this mediates “thermoregulatory failure” during the immediate recovery period; 3) EHS is a predictable condition primarily resulting from overwhelming heat stress; 4) heat-induced endotoxemia mediates systemic inflammatory response syndrome in all EHS cases; 5) nonsteroidal anti-inflammatory drugs for EHS prevention; 6) EHS shares similar mechanisms with malignant hyperthermia; 7) cooling to a specific body core temperature during treatment for EHS; and 8) return to physical activity based on physiological responses to a single-exercise heat tolerance test. In this review, we present and discuss the origins and the evidence for each controversy and propose next steps to resolve the misconception.
Diaphragm muscle weakness in chronic heart failure (CHF) is caused by elevated oxidants and exacerbates breathing abnormalities, exercise intolerance, and dyspnea. However, the specific source of oxidants that cause diaphragm weakness is unknown. We examined whether mitochondrial reactive oxygen species (ROS) cause diaphragm weakness in CHF by testing the hypothesis that CHF animals treated with a mitochondria-targeted antioxidant have normal diaphragm function. Rats underwent CHF or sham surgery. Eight weeks after surgeries, we administered a mitochondrial-targeted antioxidant (MitoTEMPO; 1 mg·kg(-1)·day(-1)) or sterile saline (Vehicle). Left ventricular dysfunction (echocardiography) pre- and posttreatment and morphological abnormalities were consistent with the presence of CHF. CHF elicited a threefold (P < 0.05) increase in diaphragm mitochondrial H2O2 emission, decreased diaphragm glutathione content by 23%, and also depressed twitch and maximal tetanic force by ∼20% in Vehicle-treated animals compared with Sham (P < 0.05 for all comparisons). Diaphragm mitochondrial H2O2 emission, glutathione content, and twitch and maximal tetanic force were normal in CHF animals receiving MitoTEMPO. Neither CHF nor MitoTEMPO altered the diaphragm protein levels of antioxidant enzymes: superoxide dismutases (CuZn-SOD or MnSOD), glutathione peroxidase, and catalase. In both Vehicle and MitoTEMPO groups, CHF elicited a ∼30% increase in cytochrome c oxidase activity, whereas there were no changes in citrate synthase activity. Our data suggest that elevated mitochondrial H2O2 emission causes diaphragm weakness in CHF. Moreover, changes in protein levels of antioxidant enzymes or mitochondrial content do not seem to mediate the increase in mitochondria H2O2 emission in CHF and protective effects of MitoTEMPO.
Combined heat stress, dehydration, and exercise is associated with enhanced oxidative stress in humans, but the separate and combined effects of heat stress and exercise on circulatory markers of oxidative stress without the influence of dehydration remain uncertain. The purpose of this study was to determine the effects of whole body heat stress alone and in combination with exercise on blood markers of oxidative stress in euhydrated humans. Eight males wore a water-perfused suit at rest and during 6 min of one-legged knee extensor exercise under control and heat stress conditions while maintaining euhydration. Following the control trial and a 15 min resting period, hot water was perfused through the suit in order to increase core, skin, and mean body temperatures by ~1, ~6, and ~2°C, respectively. Blood samples were taken to measure reduced glutathione (GSH), oxidized glutathione (GSSG), superoxide dismutase (SOD) and plasma isoprostanes. Heat stress alone did not alter GSH, SOD activity, or plasma isoprostanes, but increased GSSG leading to a reduction in the GSH/GSSG ratio. No changes in these variables were observed with exercise alone. Conversely, combined heat stress and exercise increased both GSH and GSSG, decreased SOD activity, but did not alter GSH/GSSG ratio or isoprostanes. In conclusion, these findings suggest that heat stress, independently of dehydration, induces non-radical oxidative stress at rest but not during moderate exercise because an increase in antioxidant defense compensates the heat stress-induced non-radical oxidative stress.
With increasing participation of females in endurance athletics and active military service, it is important to determine if there are inherent sex-dependent susceptibilities to exertional heat injury or heat stroke. In this study we compared responses of male and female adult mice to exertional heat stroke (EHS). All mice were instrumented for telemetry core temperature measurements and were exercise-trained for 3 wk before EHS. During EHS, environmental temperature was 37.5°C (35% RH) while the mice ran on a forced running wheel, using incremental increases in speed. The symptom-limited endpoint was loss of consciousness, occurring at ~42.2°C core temperature. Females ran greater distances (623 vs. 346 m, P < 0.0001), reached faster running speeds (7.2 vs. 5.1 m/min, P < 0.0001), exercised for longer times (177 vs. 124 min, P < 0.0001), and were exposed to greater internal heat loads (240 vs.160°C·min; P < 0.0001). Minimum Tc during hypothermic recovery was ~32.0°C in both sexes. Females lost 9.2% body weight vs. 7.5% in males ( P < 0.001). Females demonstrated higher circulating corticosterone (286 vs 183 ng/ml, P = 0.001, at 3 h), but most plasma cytokines were not different. A component of performance in females could be attributed to greater body surface area/mass and greater external power performance. However, there were significant and independent effects of sex alone and a crossed effect of "sex × power" on performance. These results demonstrate that female mice have greater resistance to EHS during exercise in hyperthermia and that these effects cannot be attributed solely to body size. NEW & NOTEWORTHY Female mice are surprisingly more resistant to exertional heat stroke than male mice. They run faster and longer and can withstand greater internal heat loads. These changes cannot be fully accounted for by increased body surface/mass ratio in females or on differences in aerobic performance. Although the stress-immune response in males and females was similar, females exhibited markedly higher plasma corticosteroid levels, which were sustained over 14 days of recovery.
Key points Exposure to exertional heat stroke (EHS) is associated with increased risk of long‐term cardiovascular disorders in humans. We demonstrate that in female mice, severe EHS results in metabolic changes in the myocardium, emerging only after 9–14 days. This was not observed in males that were symptom‐limited at much lower exercise levels and heat loads compared to females. At 14 days of recovery in females, there were marked elevations in myocardial free fatty acids, ceramides and diacylglycerols, consistent with development of underlying cardiac abnormalities. Glycolysis shifted towards the pentose phosphate and glycerol‐3‐phosphate dehydrogenase pathways. There was evidence for oxidative stress, tissue injury and microscopic interstitial inflammation. The tricarboxylic acid cycle and nucleic acid metabolism pathways were also negatively affected. We conclude that exposure to EHS in female mice has the capacity to cause delayed metabolic disorders in the heart that could influence long‐term health. Abstract Exposure to exertional heat stroke (EHS) is associated with a higher risk of long‐term cardiovascular disease in humans. Whether this is a cause‐and‐effect relationship remains unknown. We studied the potential of EHS to contribute to the development of a ‘silent’ form of cardiovascular disease using a preclinical mouse model of EHS. Plasma and ventricular myocardial samples were collected over 14 days of recovery. Male and female C57bl/6J mice underwent forced wheel running for 1.5–3 h in a 37.5°C/40% relative humidity until symptom limitation, characterized by CNS dysfunction. They reached peak core temperatures of 42.2 ± 0.3°C. Females ran ∼40% longer, reaching ∼51% greater heat load. Myocardial and plasma samples (n = 8 per group) were obtained between 30 min and 14 days of recovery, analysed using metabolomics/lipidomics platforms and compared to exercise controls. The immediate recovery period revealed an acute energy substrate crisis from which both sexes recovered within 24 h. However, at 9–14 days, the myocardium of female mice developed marked elevations in free fatty acids, ceramides and diacylglycerols. Glycolytic and tricarboxylic acid cycle metabolites revealed bottlenecks in substrate flow, with build‐up of intermediate metabolites consistent with oxidative stress and damage. Males exhibited only late stage reductions in acylcarnitines and elevations in acetylcarnitine. Histopathology at 14 days showed interstitial inflammation in the female hearts only. The results demonstrate that the myocardium of female mice is vulnerable to a slowly emerging metabolic disorder following EHS that may harbinger long‐term cardiovascular complications. Lack of similar findings in males may reflect their lower heat exposure.
Evidence of increased reactive oxygen species (ROS) production is observed in the circulation during exercise in humans. This is exacerbated at elevated body temperatures and attenuated when normal exercise-induced body temperature elevations are suppressed. Why ROS production during exercise is temperature dependent is entirely unknown. This review covers the human exercise studies to date that provide evidence that oxidant and antioxidant changes observed in the blood during exercise are dependent on temperature and fluid balance. We then address possible mechanisms linking exercise with these variables that include shear stress, effects of hemoconcentration, and signaling pathways involving muscle osmoregulation. Since pathways of muscle osmoregulation are rarely discussed in this context, we provide a brief review of what is currently known and unknown about muscle osmoregulation and how it may be linked to oxidant production in exercise and hyperthermia. Both the circulation and the exercising muscle fibers become concentrated with osmolytes during exercise in the heat, resulting in a competition for available water across the muscle sarcolemma and other tissues. We conclude that though multiple mechanisms may be responsible for the changes in oxidant/antioxidant balance in the blood during exercise, a strong case can be made that a significant component of ROS produced during some forms of exercise reflect requirements of adapting to osmotic challenges, hyperthermia challenges, and loss of circulating fluid volume.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers