WORDS)BACKGROUND: The SARS-CoV-2 outbreak poses challenge to healthcare systems due to high complication rates in patients with cardiometabolic diseases. Here, we identify risk factors and propose a clinical score to predict COVID-19 lethality, including specific factors for diabetes and obesity and its role in improving risk prediction. METHODS:We obtained data of confirmed and negative COVID-19 cases and their demographic and health characteristics from the General Directorate of Epidemiology of Mexican Ministry of Health. We investigated specific risk factors associated to COVID-19 positivity and mortality and explored the impact of diabetes and obesity on modifying COVID-19 related lethality. Finally, we built a clinical score to predict COVID-19 lethality. RESULTS:Among 177,133 subjects at May 18 th , 2020, we observed 51,633 subjects with SARS-CoV-2 and 5,332 deaths. Risk factors for lethality in COVID-19 include early-onset diabetes, obesity, COPD, advanced age, hypertension, immunosuppression, and CKD; we observed that obesity mediates 49.5% of the effect of diabetes on COVID-19 lethality. Earlyonset diabetes conferred an increased risk of hospitalization and obesity conferred an increased risk for ICU admission and intubation. Our predictive score for COVID-19 lethality included age ≥ 65 years, diabetes, early-onset diabetes, obesity, age <40 years, CKD, hypertension, and immunosuppression and significantly discriminates lethal from non-lethal COVID-19 cases (c-statistic=0.823). RESULTS:Here, we propose a mechanistic approach to evaluate risk for complications and lethality attributable to COVID-19 considering the effect of obesity and diabetes in Mexico.Our score offers a clinical tool for quick determination of high-risk susceptibility patients in a first contact scenario.
Type 2 diabetes is the main health problem in Mexico. The large and growing number of cases and the remarkable economic impact of the disease support this statement. The condition is expressed at an earlier age and at a lower body mass index in Mexican mestizos compared with the age and body mass index reported in Caucasians. In addition, Mexican mestizos have an increased susceptibility to developing diabetic nephropathy. The Mexican health system needs major adjustments in order to prevent and treat type 2 diabetes. Treatment is not currently based on the needs and expectations of the patient. As a result, it is insufficient, belated, and costly. Close to 20% of the preventable deaths in Mexico are caused by diabetes and related metabolic diseases. Even a small decrease in this rate could result in substantial savings for the Mexican healthcare system.
BACKGROUND COVID-19 has had a disproportionate impact on older adults. Mexico's population is younger, yet COVID-19’s impact on older adults is comparable to countries with older population structures. Here, we aim to identify health and structural determinants that increase susceptibility to COVID-19 in older Mexican adults beyond chronological aging. METHODS We analyzed confirmed COVID-19 cases in older adults using data from the General Directorate of Epidemiology of Mexican Ministry of Health. We modeled risk factors for increased COVID-19 severity and mortality, using mixed models to incorporate multilevel data concerning healthcare access and marginalization. We also evaluated structural factors and comorbidity profiles compared to chronological age for COVID-19 mortality risk prediction. RESULTS We analyzed 20,804 confirmed SARS-CoV-2 cases in adults aged ≥60 years. Male sex, smoking, diabetes, and obesity were associated with pneumonia, hospitalization and ICU admission in older adults, CKD and COPD were associated with hospitalization. High social lag indexes and access to private care were predictors of COVID-19 severity and mortality. Age was not a predictor of COVID-19 severity in individuals without comorbidities and combination of structural factors and comorbidities were better predictors of COVID-19 lethality and severity compared to chronological age alone. COVID-19 baseline lethality hazards were heterogeneously distributed across Mexican municipalities, particularly when comparing urban and rural areas. CONCLUSIONS Structural factors and comorbidity explain excess risk for COVID-19 severity and mortality over chronological age in older Mexican adults. Clinical decision-making related to COVID-19 should focus away from chronological aging onto more a comprehensive geriatric care approach.
IntroductionDiabetes and hyperglycemia are risk factors for critical COVID-19 outcomes; however, the impact of pre-diabetes and previously unidentified cases of diabetes remains undefined. Here, we profiled hospitalized patients with undiagnosed type 2 diabetes and pre-diabetes to evaluate its impact on adverse COVID-19 outcomes. We also explored the role of de novo and intrahospital hyperglycemia in mediating critical COVID-19 outcomes.Research design and methodsProspective cohort of 317 hospitalized COVID-19 cases from a Mexico City reference center. Type 2 diabetes was defined as previous diagnosis or treatment with diabetes medication, undiagnosed diabetes and pre-diabetes using glycosylated hemoglobin (HbA1c) American Diabetes Association (ADA) criteria and de novo or intrahospital hyperglycemia as fasting plasma glucose (FPG) ≥140 mg/dL. Logistic and Cox proportional regression models were used to model risk for COVID-19 outcomes.ResultsOverall, 159 cases (50.2%) had type 2 diabetes and 125 had pre-diabetes (39.4%), while 31.4% of patients with type 2 diabetes were previously undiagnosed. Among 20.0% of pre-diabetes cases and 6.1% of normal-range HbA1c had de novo hyperglycemia. FPG was the better predictor for critical COVID-19 compared with HbA1c. Undiagnosed type 2 diabetes (OR: 5.76, 95% CI 1.46 to 27.11) and pre-diabetes (OR: 4.15, 95% CI 1.29 to 16.75) conferred increased risk of severe COVID-19. De novo/intrahospital hyperglycemia predicted critical COVID-19 outcomes independent of diabetes status.ConclusionsUndiagnosed type 2 diabetes, pre-diabetes and de novo hyperglycemia are risk factors for critical COVID-19. HbA1c must be measured early to adequately assess individual risk considering the large rates of undiagnosed type 2 diabetes in Mexico.
The Islamic Republic of Iran reported its first COVID-19 cases by 19th February 2020, since then it has become one of the most affected countries, with more than 73,000 cases and 4,585 deaths to this date. Spatial modeling could be used to approach an understanding of structural and sociodemographic factors that have impacted COVID-19 spread at a province-level in Iran. Therefore, in the present paper, we developed a spatial statistical approach to describe how COVID-19 cases are spatially distributed and to identify significant spatial clusters of cases and how socioeconomic and climatic features of Iranian provinces might predict the number of cases. The analyses are applied to cumulative cases of the disease from February 19th to March 18th. They correspond to obtaining maps associated with quartiles for rates of COVID-19 cases smoothed through a Bayesian technique and relative risks, the calculation of global (Moran’s I) and local indicators of spatial autocorrelation (LISA), both univariate and bivariate, to derive significant clustering, and the fit of a multivariate spatial lag model considering a set of variables potentially affecting the presence of the disease. We identified a cluster of provinces with significantly higher rates of COVID-19 cases around Tehran (p-value< 0.05), indicating that the COVID-19 spread within Iran was spatially correlated. Urbanized, highly connected provinces with older population structures and higher average temperatures were the most susceptible to present a higher number of COVID-19 cases (p-value < 0.05). Interestingly, literacy is a factor that is associated with a decrease in the number of cases (p-value < 0.05), which might be directly related to health literacy and compliance with public health measures. These features indicate that social distancing, protecting older adults, and vulnerable populations, as well as promoting health literacy, might be useful to reduce SARS-CoV-2 spread in Iran. One limitation of our analysis is that the most updated information we found concerning socioeconomic and climatic features is not for 2020, or even for a same year, so that the obtained associations should be interpreted with caution. Our approach could be applied to model COVID-19 outbreaks in other countries with similar characteristics or in case of an upturn in COVID-19 within Iran.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.