We consider a data owner that outsources its dataset to an untrusted server. The owner wishes to enable the server to answer range queries on a single attribute, without compromising the privacy of the data and the queries. There are several schemes on "practical" private range search (mainly in Databases venues) that attempt to strike a trade-off between efficiency and security. Nevertheless, these methods either lack provable security guarantees, or permit unacceptable privacy leakages. In this paper, we take an interdisciplinary approach, which combines the rigor of Security formulations and proofs with efficient Data Management techniques. We construct a wide set of novel schemes with realistic security/performance trade-offs, adopting the notion of Searchable Symmetric Encryption (SSE) primarily proposed for keyword search. We reduce range search to multikeyword search using range covering techniques with treelike indexes. We demonstrate that, given any secure SSE scheme, the challenge boils down to (i) formulating leakages that arise from the index structure, and (ii) minimizing false positives incurred by some schemes under heavy data skew. We analytically detail the superiority of our proposals over prior work and experimentally confirm their practicality.
Bloom filters are extensively used in distributed applications, especially in distributed databases and distributed information systems, to reduce network requirements and to increase performance. In this work, we propose two novel Bloom filter features that are important for distributed databases and information systems. First, we present a new approach to encode a Bloom filter such that its length can be adapted to the cardinality of the set it represents, with negligible overhead with respect to computation and false positive probability. The proposed encoding allows for significant network savings in distributed databases, as it enables the participating nodes to optimize the length of each Bloom filter before sending it over the network, for example, when executing Bloom joins. Second, we show how to estimate the number of distinct elements in a Bloom filter, for situations where the represented set is not materialized. These situations frequently arise in distributed databases, where estimating the cardinality of the represented sets is necessary for constructing an efficient query plan. The estimation is highly accurate and comes with tight probabilistic bounds. For both features we provide a thorough probabilistic analysis and extensive experimental evaluation which confirm the effectiveness of our approaches.Note: This is a preprint. The final version is available at http://www.springerlink. com/
While traditional data-management systems focus on evaluating single, adhoc queries over static data sets in a centralized setting, several emerging applications require (possibly, continuous) answers to queries on dynamic data that is widely distributed and constantly updated. Furthermore, such query answers often need to discount data that is "stale", and operate solely on a sliding window of recent data arrivals (e.g., data updates occurring over the last 24 hours). Such distributed data streaming applications mandate novel algorithmic solutions that are both time-and space-efficient (to manage high-speed data streams), and also communication-efficient (to deal with physical data distribution). In this paper, we consider the problem of complex query answering over distributed, high-dimensional data streams in the sliding-window model. We introduce a novel sketching technique (termed ECM-sketch) that allows effective summarization of streaming data over both time-based and count-based sliding windows with probabilistic accuracy guarantees. Our sketch structure enables point as well as inner-product queries, and can be employed to address a broad range of problems, such as maintaining frequency statistics, finding heavy hitters, and computing quantiles in the sliding-window model. Focusing on distributed environments, we demonstrate how ECM-sketches of individual, local streams can be composed to generate a (low-error) ECM-sketch summary of the order-preserving aggregation of all streams; furthermore, we show how ECM-sketches can be exploited for continuous monitoring of sliding-window queries over distributed streams. Our extensive experimental study with two real-life data sets validates our theoretical claims and verifies the effectiveness of our techniques. To the best of our knowledge, ours is the first work to address efficient, guaranteed-error complex query answering over distributed data streams in the sliding-window model.
We consider a data owner that outsources its dataset to an untrusted server. The owner wishes to enable the server to answer range queries on a single attribute, without compromising the privacy of the data and the queries. There are several schemes on "practical" private range search (mainly in databases venues) that attempt to strike a trade-off between efficiency and security. Nevertheless, these methods either lack provable security guarantees, or permit unacceptable privacy leakages. In this paper, we take an interdisciplinary approach, which combines the rigor of security formulations and proofs with efficient Data Management techniques. We construct a wide set of novel schemes with realistic security/performance trade-offs, adopting the notion of Searchable Symmetric Encryption (SSE) primarily proposed for keyword search. We reduce range search to multi-keyword search using range covering techniques with tree-like indexes, and formalize the problem as Range Searchable Symmetric Encryption (RSSE). We demonstrate that, given any secure SSE scheme, the challenge boils down to (i) formulating leakages that arise from the index structure, and (ii) minimizing false positives incurred by some schemes under heavy data skew. We also explain an important concept in the recent SSE bibliography, namely locality, and design generic and specialized ways to attribute locality to our RSSE schemes. Moreover, we are the first to devise secure schemes for answering range aggregate queries, such as range sums and range min/max. We analytically detail the superiority of our proposals over prior work and experimentally confirm their practicality. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. INTRODUCTIONWe focus on a setting with two parties; a data owner and a server. The owner outsources its dataset to the server, and gives the latter the authority to answer range queries on a single attribute. The server is untrusted, and the goal is to protect the privacy of the dataset and the queries. The owner encrypts its data prior to sending them to the server. The challenge lies in enabling the server to process the owner's queries directly on the encrypted data, while achieving performance and costs close to the non-private case. The benefits of data outsourcing and the importance of privacy have been stressed in numerous earlier works (e.g., [18,59,62,66]).Prior work. Privacy-preserving range queries can be solved with optimal security via powerful theoretical cryptographic tools, such as Oblivious ...
Bloom filter based algorithms have proven successful as very efficient technique to reduce communication costs of database joins in a distributed setting. However, the full potential of bloom filters has not yet been exploited. Especially in the case of multi-joins, where the data is distributed among several sites, additional optimization opportunities arise, which require new bloom filter operations and computations. In this paper, we present these extensions and point out how they improve the performance of such distributed joins. While the paper focuses on efficient join computation, the described extensions are applicable to a wide range of usages, where bloom filters are facilitated for compressed set representation.
Mining frequent subgraph patterns in graph databases is a challenging and important problem with applications in several domains. Recently, there is a growing interest in generalizing the problem to uncertain graphs, which can model the inherent uncertainty in the data of many applications. The main difficulty in solving this problem results from the large number of candidate subgraph patterns to be examined and the large number of subgraph isomorphism tests required to find the graphs that contain a given pattern. The latter becomes even more challenging, when dealing with uncertain graphs. In this paper, we propose a method that uses an index of the uncertain graph database to reduce the number of comparisons needed to find frequent subgraph patterns. The proposed algorithm relies on the apriori property for enumerating candidate subgraph patterns efficiently. Then, the index is used to reduce the number of comparisons required for computing the expected support of each candidate pattern. It also enables additional optimizations with respect to scheduling and early termination, that further increase the efficiency of the method. The evaluation of our approach on three real-world datasets as well as on synthetic uncertain graph databases demonstrates the significant cost savings with respect to the state-of-the-art approach.
Aspect Oriented Programming, a relatively new programming paradigm, earned the scientific community's attention. The paradigm is already evaluated for traditional OOP and component-based software development with remarkable results. However, most of the published work, while of excellent quality, is mostly theoretical or involves evaluation of AOP for research oriented and experimental software. Unlike the previous work, this study considers the AOP paradigm for solving real-life problems, which can be faced in any commercial software. We evaluate AOP in the development of a high-performance component-based webcrawling system, and compare the process with the development of the same system without AOP. The results of the case study mostly favor the aspect oriented paradigm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.