Abstract. We present stellar parameters and metallicities, obtained from a detailed spectroscopic analysis, for a large sample of 98 stars known to be orbited by planetary mass companions (almost all known targets), as well as for a volume-limited sample of 41 stars not known to host any planet. For most of the stars the stellar parameters are revised versions of the ones presented in our previous work. However, we also present parameters for 18 stars with planets not previously published, and a compilation of stellar parameters for the remaining 4 planet-hosts for which we could not obtain a spectrum. A comparison of our stellar parameters with values of T eff , log g, and [Fe/H] available in the literature shows a remarkable agreement. In particular, our spectroscopic log g values are now very close to trigonometric log g estimates based on Hipparcos parallaxes. The derived [Fe/H] values are then used to confirm the previously known result that planets are more prevalent around metalrich stars. Furthermore, we confirm that the frequency of planets is a strongly rising function of the stellar metallicity, at least for stars with [Fe/H] > 0. While only about 3% of the solar metallicity stars in the CORALIE planet search sample were found to be orbited by a planet, this number increases to more than 25% for stars with [Fe/H] above +0.3. Curiously, our results also suggest that these percentages might remain relatively constant for values of [Fe/H] lower than about solar, increasing then linearly with the mass fraction of heavy elements. These results are discussed in the context of the theories of planetary formation.
To understand the formation and evolution of solar-type stars in the solar neighborhood, we need to measure their stellar parameters to high accuracy. We present a catalogue of accurate stellar parameters for 451 stars that represent the HARPS Guaranteed Time Observations (GTO) "high precision" sample. Spectroscopic stellar parameters were measured using high signal-to-noise (S /N) spectra acquired with the HARPS spectrograph. The spectroscopic analysis was completed assuming LTE with a grid of Kurucz atmosphere models and the recent ARES code for measuring line equivalent widths. We show that our results agree well with those ones presented in the literature (for stars in common). We present a useful calibration for the effective temperature as a function of the index color B − V and [Fe/H]. We use our results to study the metallicity-planet correlation, namely for very low mass planets. The results presented here suggest that in contrast to their jovian couterparts, neptune-like planets do not form preferentially around metal-rich stars. The ratio of jupiter-to-neptunes is also an increasing function of stellar metallicity. These results are discussed in the context of the core-accretion model for planet formation.
Context. We performed a uniform and detailed abundance analysis of 12 refractory elements (Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Co, Sc, Mn, and V) for a sample of 1111 FGK dwarf stars from the HARPS GTO planet search program. Of these stars, 109 are known to harbor giant planetary companions and 26 stars are exclusively hosting Neptunians and super-Earths. Aims. The two main goals of this paper are to investigate whether there are any differences between the elemental abundance trends for stars of different stellar populations and to characterize the planet host and non-host samples in terms of their [X/H]. The extensive study of this sample, focused on the abundance differences between stars with and without planets will be presented in a parallel paper. Methods. The equivalent widths of spectral lines were automatically measured from HARPS spectra with the ARES code. The abundances of the chemical elements were determined using an LTE abundance analysis relative to the Sun, with the 2010 revised version of the spectral synthesis code MOOG and a grid of Kurucz ATLAS9 atmospheres. To separate the Galactic stellar populations we applied both a purely kinematical approach and a chemical method. Results. We found that the chemically separated (based on the Mg, Si, and Ti abundances) thin-and thick disks are also chemically disjunct for Al, Sc, Co, and Ca. Some bifurcation might also exist for Na, V, Ni, and Mn, but there is no clear boundary of their [X/Fe] ratios. We confirm that an overabundance in giant-planet host stars is clear for all studied elements.We also confirm that stars hosting only Neptunian-like planets may be easier to detect around stars with similar metallicities than around non-planet hosts, although for some elements (particulary α-elements) the lower limit of [X/H] is very abrupt.
Context. Searching for planets around stars with different masses probes the outcome of planetary formation for different initial conditions. The low-mass M dwarfs are also the most frequent stars in our Galaxy and potentially therefore, the most frequent planet hosts. Aims. This drives observations of a sample of 102 southern nearby M dwarfs, using a fraction of our guaranteed time on the ESO/HARPS spectrograph. We observed 460 hours and gathered 1965 precise (∼ 1 − 3 m/s) radial velocities, spanning the period from Feb. 11th, 2003 to Apr. 1st 2009. Methods. This paper makes available the sample's time series, presents their precision and variability. We apply systematic searches for long-term trends, periodic signals and Keplerian orbits (from 1 to 4 planets). We analyze the subset of stars with detected signals and apply several diagnostics to discriminate whether the observed Doppler shifts are caused by stellar surface inhomogeneities or by the radial pull of orbiting planets. To prepare for the statistical view of our survey we also compute the limits on possible unseen signals, and derive a first estimate of the frequency of planets orbiting M dwarfs. Results. We recover the planetary signals corresponding to 9 planets already announced by our group (Gl 176 b, Gl 581 b, c, d & e, Gl 674 b, Gl 433 b, Gl 667C b and Gl 667C c). We present radial velocities that confirm GJ 849 hosts a Jupiter-mass planet, plus a long-term radial-velocity variation. We also present RVs that precise the planetary mass and period of Gl 832b. We detect longterm RV changes for Gl 367, Gl 680 and Gl 880 betraying yet unknown long-period companions. We identify candidate signals in the radial-velocity time series of 11 other M dwarfs. Spectral diagnostics and/or photometric observations demonstrate however that they are most probably caused by stellar surface inhomogeneities. Finally, we find our survey sensitive to few Earth-mass planets for periods up to several hundred days. We derive a first estimate of the occurrence of M-dwarf planets as a function of their minimum mass and orbital period. In particular, we find that giant planets (m sin i = 100 − 1, 000 M ⊕ ) have a low frequency (e.g. f 1% for P = 1 − 10 d and f = 0.02 +0.03 −0.01 for P = 10 − 100 d), whereas super-Earths (m sin i = 1 − 10 M ⊕ ) are likely very abundant ( f = 0.36 +0.25 −0.10 for P = 1 − 10 d and f = 0.35 +0.45 −0.11 for P = 10 − 100 d). We also obtained η ⊕ = 0.41 +0.54 −0.13 , the frequency of habitable planets orbiting M dwarfs (1 ≤ m sin i ≤ 10 M ⊕ ). For the first time, η ⊕ is a direct measure and not a number extrapolated from the statistic of more massive and/or shorter-period planets.
Abstract. With the goal of confirming the metallicity "excess" present in stars with planetary-mass companions, we present in this paper a high-precision spectroscopic study of a sample of dwarfs included in the CORALIE extrasolar planet survey. The targets were chosen according to the basic criteria that 1) they formed part of a limited volume and 2) they did not present the signature of a planetary host companion. A few stars with planets were also observed and analysed; namely, HD 6434, HD 13445 (Gl 86), HD 16141, HD 17051 (ι Hor), HD 19994, HD 22049 ( Eri), HD 28185, HD 38529, HD 52265, HD 190228, HD 210277 and HD 217107. For some of these objects there had been no previous spectroscopic studies. The spectroscopic analysis was done using the same technique as in previous work on the metallicity of stars with planets, thereby permitting a direct comparison of the results. The work described in this paper thus represents the first uniform and unbiased comparison between stars with and without planetary-mass companions in a volumelimited sample. The results show that 1) stars with planets are significantly metal-rich, and 2) that the source of the metallicity is most probably "primordial". The results presented here may impose serious constraints on planetary system formation and evolution models.
Abstract.A sample of spectroscopic binaries and a sample of single planetary systems, both having main-sequence solar-type primary components, are selected in order to compare their eccentricities. The positions of the objects in the (P.(1 − e 2 ) 3/2 , e) plane is used to determine parts in the period-eccentricity diagram that are not affected by tidal circularization. The original eccentricities of binaries and planets are derived and compared. They seem to be weakly or not at all correlated with period in both samples, but two major differences are found:(1) The tidal circularization of planetary orbits is almost complete for periods shorter than 5 days, but it is not visible when P.(1 − e 2 ) 3/2 is longer than this limit. This suggests that the circularization occurs rapidly after the end of the migration process and is probably simultaneous with the end of the formation of the planet. By contrast, we confirm that the circularization of the binary orbits is a process still progressing a long time after the formation of the systems. (2) Beyond the circularization limit, the eccentricities of the orbits of the planets are significantly smaller than those of binary orbits, and this discrepancy cannot be due to a selection effect. Moreover, the eccentricities of binaries with small mass ratios are quite similar to those of all binaries with q < 0.8. This suggests that the low eccentricities of exoplanet orbits are not a consequence of low-mass secondaries in a universal process. These remarks are in favor of the idea that binaries and exoplanets are two different classes of object from the point of view of their formation.
Abstract. We present the discovery of two Saturn-mass companions to HD 108147 and HD 168746. Both belong to the lightest ever discovered planets. The minimum mass of the companion to HD 168746 is of only 0.77 the mass of Saturn and its orbital period is 6.4 days. The companion to HD 108147 orbits its parent star in 10.9 days and its minimum mass is 1.34 that of Saturn. Its orbit is characterized by a high eccentricity, e = 0.50, indicating possibly the presence of a second companion. The detection of Saturn-mass planets by means of the Doppler technique demands high radial-velocity measurement precision. The two new candidates were discovered by means of the CORALIE echelle spectrograph. The instrumental accuracy of CORALIE combined with the simultaneous ThArreference technique has reached a level better than 3 m s −1 . On many observed objects the precision is now limited by photon noise. We present in this paper the weighted cross-correlation technique, which leads to an improvement in the photon noise of the computed radial velocity. We discuss as well a modification of the numerical crosscorrelation mask which reduces significantly the residual perturbation effects produced by telluric absorption lines.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.