PurposeThe aim of this multicenter trial was to generate a [123I]FP-CIT SPECT database of healthy controls from the common SPECT systems available in Japan.MethodsThis study included 510 sets of SPECT data from 256 healthy controls (116 men and 140 women; age range, 30–83 years) acquired from eight different centers. Images were reconstructed without attenuation or scatter correction (NOACNOSC), with only attenuation correction using the Chang method (ChangACNOSC) or X-ray CT (CTACNOSC), and with both scatter and attenuation correction using the Chang method (ChangACSC) or X-ray CT (CTACSC). These SPECT images were analyzed using the Southampton method. The outcome measure was the specific binding ratio (SBR) in the striatum. These striatal SBRs were calibrated from prior experiments using a striatal phantom.ResultsThe original SBRs gradually decreased in the order of ChangACSC, CTACSC, ChangACNOSC, CTACNOSC, and NOACNOSC. The SBRs for NOACNOSC were 46% lower than those for ChangACSC. In contrast, the calibrated SBRs were almost equal under no scatter correction (NOSC) conditions. A significant effect of age was found, with an SBR decline rate of 6.3% per decade. In the 30–39 age group, SBRs were 12.2% higher in women than in men, but this increase declined with age and was absent in the 70–79 age group.ConclusionsThis study provided a large-scale quantitative database of [123I]FP-CIT SPECT scans from different scanners in healthy controls across a wide age range and with balanced sex representation. The phantom calibration effectively harmonizes SPECT data from different SPECT systems under NOSC conditions. The data collected in this study may serve as a reference database. Electronic supplementary materialThe online version of this article (10.1007/s00259-018-3976-5) contains supplementary material, which is available to authorized users.
IntroductionWe present the Brain‐Age Score (BAS) as a magnetic resonance imaging (MRI)‐based index for Alzheimer's disease (AD). We developed a fully automated framework for estimating the BAS in healthy controls (HCs) and individuals with mild cognitive impairment (MCI) or AD, using MRI scans.MethodsWe trained the proposed framework using 385 HCs from the IXI and OASIS datasets and evaluated 146 HCs, 102 stable‐MCI (sMCI), 112 progressive‐MCI (pMCI), and 147 AD patients from the J‐ADNI dataset. We used a correlation test to determine the association between the BAS and four traditional screening tools of AD: the Mini‐Mental State Examination (MMSE), Clinical Dementia Ratio (CDR), Alzheimer's Disease Assessment Score (ADAS), and Functional Assessment Questionnaire (FAQ). Furthermore, we assessed the association between BAS and anatomical MRI measurements: the normalized gray matter (nGM), normalized white matter (nWM), normalized cerebrospinal fluid (nCSF), mean cortical thickness as well as hippocampus volume.ResultsThe correlation results demonstrated that the BAS is in line with traditional screening tools of AD (i.e., the MMSE, CDR, ADAS, and FAQ scores) as well as anatomical MRI measurements (i.e., nGM, nCSF, mean cortical thickness, and hippocampus volume).DiscussionThe BAS may be useful for diagnosing the brain atrophy level and can be a reliable automated index for clinical applications and neuropsychological screening tools.
In various independent studies to date, cerebral cortical thickness and white matter hyperintensity (WMH) volume have been associated with episodic memory, depression, and mild cognitive impairment (MCI). The aim of this study was to uncover variations in cortical thickness and WMH volume in association with episodic memory, depressive state, and the presence of MCI simultaneously in a single study population. The participants were 186 individuals with MCI (clinical dementia rating [CDR] of 0.5) and 136 healthy elderly controls (HCs; CDR of 0) drawn from two community-based cohort studies in northern Japan. We computed cerebral cortical thickness and WMH volume by using MR scans and statistically analyzed differences in these indices between HCs and MCI participants. We also assessed the associations of these indices with memory performance and depressive state in participants with MCI. Compared with HCs, MCI participants exhibited thinner cortices in the temporal and inferior parietal lobes and greater WMH volumes in the corona radiata and semioval center. In MCI participants, poor episodic memory was associated with thinner cortices in the left entorhinal region and increased WMH volume in the posterior periventricular regions. Compared with non-depressed MCI participants, depressed MCI participants showed reduced cortical thickness in the anterior medial temporal lobe and gyrus adjacent to the amygdala bilaterally, as well as greater WMH volume as a percentage of the total intracranial volume (WMHr). A higher WMHr was associated with cortical thinning in the frontal, temporal, and parietal regions in MCI participants. These results demonstrate that episodic memory and depression are associated with both cortical thickness and WMH volume in MCI participants. Additional longitudinal studies are needed to clarify the dynamic associations and interactions among these indices.
Epilepsy is a diverse brain disorder, and the pathophysiology of its various forms and comorbidities is largely unknown. A recent machine learning method enables us to estimate an individual's "brain-age" from MRI; this brain-age prediction is expected as a novel individual biomarker of neuropsychiatric disorders. The aims of this study were to estimate the brain-age for various categories of epilepsy and to evaluate clinical discrimination by brain-age for (1) the effect of psychosis on temporal lobe epilepsy (TLE), (2) psychogenic nonepileptic seizures (PNESs) from MRI-negative epilepsies, and (3) progressive myoclonic epilepsy (PME) from juvenile myoclonic epilepsy (JME). In total, 1196 T1-weighted MRI scans from healthy controls (HCs) were used to build a brain-age prediction model with support vector regression. Using the model, we calculated the brain-predicted age difference (brain-PAD: predicted age-chronological age) of the HCs and 318 patients with epilepsy. We compared the brain-PAD values based on the research questions. As a result, all categories of patients except for extra-temporal lobe focal epilepsy showed a significant increase in brain-PAD. TLE with hippocampal sclerosis presented a significantly higher brain-PAD than several other categories. The mean brain-PAD in TLE with interictal psychosis was 10.9 years, which was significantly higher than TLE without psychosis (5.3 years). PNES showed a comparable mean brain-PAD (10.6 years) to that of epilepsy patients. PME had a higher brain-PAD than JME (22.0 vs. 9.3 years). In conclusion, neuroimaging-based brain-age prediction can provide novel insight into or clinical usefulness for the diverse symptoms of epilepsy.
Cortical dysplasia may be one of the pathological diagnoses in AE, and in some patients it may extend to the temporal pole.
Background and purposeAutomated subfield volumetry of hippocampus is desirable for use in temporal lobe epilepsy (TLE), but its utility has not been established. Automatic segmentation of hippocampal subfields (ASHS) and the new version of FreeSurfer software (ver.6.0) using high-resolution T2-weighted MR imaging are candidates for this volumetry. The aim of this study was to evaluate hippocampal subfields in TLE patients using ASHS as well as the old and new versions of FreeSurfer.Materials and methodsWe recruited 50 consecutive unilateral TLE patients including 25 with hippocampal sclerosis (TLE-HS) and 25 without obvious etiology (TLE-nonHS). All patients and 45 healthy controls underwent high-resolution T2-weighted and 3D-volume T1-weighted MRI scanning. We analyzed all of their MR images by FreeSurfer ver.5.3, ver.6.0 and ASHS. For each subfield, normalized z-scores were calculated and compared among groups.ResultsIn TLE-HS groups, ASHS and FreeSurfer ver.6.0 revealed maximal z-scores in ipsilateral cornu ammonis (CA) 1, CA4 and dentate gyrus (DG), whereas in FreeSurfer ver.5.3 ipsilateral subiculum showed maximal z-scores. In TLE-nonHS group, there was no significant volume reduction by either ASHS or FreeSurfer.ConclusionsASHS and the new version of FreeSurfer may have an advantage in compatibility with existing histopathological knowledge in TLE patients with HS compared to the old version of FreeSurfer (ver.5.3), although further investigations with pathological findings and/or surgical outcomes are desirable.
BackgroundDespite recent advances in diffusion MRI (dMRI), there is still limited information on neurite orientation dispersion and density imaging (NODDI) in temporal lobe epilepsy (TLE). This study aimed to demonstrate neurite density and dispersion in TLE with and without hippocampal sclerosis (HS) using whole-brain voxel-wise analyses.Material and methodsWe recruited 33 patients with unilateral TLE (16 left, 17 right), including 14 patients with HS (TLE-HS) and 19 MRI-negative 18F-fluorodeoxyglucose positron emission tomography (FDG-PET)-positive patients (MRI-/PET+ TLE). The NODDI toolbox calculated the intracellular volume fraction (ICVF) and orientation dispersion index (ODI). Conventional dMRI metrics, that is, fractional anisotropy (FA) and mean diffusivity (MD), were also estimated. After spatial normalization, all dMRI parameters (ICVF, ODI, FA, and MD) of the patients were compared with those of age- and sex-matched healthy controls using Statistical Parametric Mapping 12 (SPM12). As a complementary analysis, we added an atlas-based region of interest (ROI) analysis of relevant white matter tracts using tract-based spatial statistics.ResultsWe found decreased neurite density mainly in the ipsilateral temporal areas of both right and left TLE, with the right TLE showing more severe and widespread abnormalities. In addition, etiology-specific analyses revealed a localized reduction in ICVF (i.e., neurite density) in the ipsilateral temporal pole in MRI-/PET+ TLE, whereas TLE-HS presented greater abnormalities, including FA and MD, in addition to a localized hippocampal reduction in ODI. The results of the atlas-based ROI analysis were consistent with the results of the SPM12 analysis.ConclusionNODDI may provide clinically relevant information as well as novel insights into the field of TLE. Particularly, in MRI-/PET+ TLE, neurite density imaging may have higher sensitivity than other dMRI parameters. The results may also contribute to better understanding of the pathophysiology of TLE with HS.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers