Sugarcane bagasse (SCB) is abundantly available agro-waste world-wide and has been used in different applications and its utilization as a source of cellulose attracting attention in the area of biomedical and other applications. The present study investigates the surface morphology, topography, structural, elemental and thermal properties of cellulose nanocrystals (CNCs) extracted by acid-hydrolysis from sugarcane bagasse as agro-waste. Morphological (field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM)), structural (fourier transformed infrared (FTIR) spectroscopy, X-ray diffraction (XRD)), elemental analysis (energy dispersive x-ray diffraction (EDX)) and thermal characterization (TG-DTG-DTA) of CNCs was carried out. Morphological characterization clearly showed the formation of rodshaped CNCs having size in the range of 250-480 nm (length) and 20-60 nm (diameter). Elemental analysis (EDX) showed 0.72 wt% sulfur impurity in CNCs along with other main components. X-ray diffraction and thermal analysis revealed that CNCs have higher crystallinity (72.5%) than that of chemically purified cellulose (CPC) (63.5%) but have lower thermal stability. These lab extracted CNCs supposed to have a high potential as nanoreinforcement into bionanocomposite for biomedical and other value-added products in industrial applications.
Xylan is the second most abundant naturally occurring renewable polysaccharide available on earth. It is a complex heteropolysaccharide consisting of different monosaccharides such as l-arabinose, d-galactose, d-mannoses and organic acids such as acetic acid, ferulic acid, glucuronic acid interwoven together with help of glycosidic and ester bonds. The breakdown of xylan is restricted due to its heterogeneous nature and it can be overcome by xylanases which are capable of cleaving the heterogeneous β-1,4-glycoside linkage. Xylanases are abundantly present in nature (e.g., molluscs, insects and microorganisms) and several microorganisms such as bacteria, fungi, yeast, and algae are used extensively for its production. Microbial xylanases show varying substrate specificities and biochemical properties which makes it suitable for various applications in industrial and biotechnological sectors. The suitability of xylanases for its application in food and feed, paper and pulp, textile, pharmaceuticals, and lignocellulosic biorefinery has led to an increase in demand of xylanases globally. The present review gives an insight of using microbial xylanases as an "Emerging Green Tool" along with its current status and future prospective.
This paper implies production of cellulase and xylanase enzyme using a potent strain of Trichoderma harzianum for the efficient deinking of photocopier waste papers. Different nutritional and environmental factors were optimized for higher production of cellulase along with xylanase. After fermentation, maximum enzyme extraction was achieved from fermented matter using a three-step extraction process with increased efficiency by 26.6-29.3 % over single-step extraction. Static solid state was found as the best fermentation type using wheat bran (WB) as carbon source and ammonium ferrous sulfate (0.02 M) as nitrogen source. Subsequently, inoculum size (8 × 10(6) CFU/gds), incubation days (4 days), temperature (34 °C), initial pH (6.0), and moisture ratio (1:3) significantly affected the enzyme production. Cellulase and xylanase activities were found to be maximum at pH 5.5 and temperature 55-60 °C with good stability (even up to 6 h). Furthermore, this crude enzyme was evaluated for the deinking of photocopier waste papers without affecting the strength properties with improved drainage as an additional advantage. The crude enzyme-deinked pulp showed 23.6 % higher deinking efficiency and 3.2 % higher brightness than chemically deinked pulp. Strength properties like tensile, burst indices, and folding endurance were also observed to improve by 6.7, 13.4, and 10.3 %, respectively, for enzyme-deinked pulp. However, the tear index was decreased by 10.5 %. The freeness of the pulp was also increased by 21.6 % with reduced drainage time by 13.9 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.