Publications

Order By: Most citations

General Relativity and the ΛCDM framework are currently the standard lore and constitute the concordance paradigm. Nevertheless, long-standing open theoretical issues, as well as possible new observational ones arising from the explosive development of cosmology the last two decades, offer the motivation and lead a large amount of research to be devoted in constructing various extensions and modifications.All extended theories and scenarios are first examined under the light of theoretical consistency, and then are applied to various geometrical backgrounds, such as the cosmological and the spherical symmetric ones. Their predictions at both the background and perturbation levels, and concerning cosmology at early, intermediate and late times, are then confronted with the huge amount of observational data that astrophysics and cosmology are able to offer recently. Theories, scenarios and models that successfully and efficiently pass the above steps are classified as viable and are candidates for the description of Nature.We list the recent developments in the fields of gravity and cosmology, presenting the state of the art, high-lighting the open problems, and outlining the directions of future research.

In the attempts to apply Finsler geometry to construct an extension of general relativity, the question about a suitable generalization of the Einstein equations is still under debate. Since Finsler geometry is based on a scalar function on the tangent bundle, the field equation which determines this function should also be a scalar equation. In the literature two such equations have been suggested: the one by Rutz and the one by one of the authors. Here we employ the method of canonical variational completion to show that Rutz equation can not be obtained from a variation of an action and that its variational completion yields the latter field equations. Moreover, to improve the mathematical rigor in the derivation of the Finsler gravity field equation, we formulate the Finsler gravity action on the positive projective tangent bundle. This has the advantage of allowing us to apply the classical variational principle, by choosing the domains of integration to be compact and independent of the dynamical variable. In particular in the pseudo-Riemannian case, the vacuum field equation becomes equivalent to the vanishing of the Ricci tensor. * manuel.hohmann@ut.ee † christian.pfeifer@ut.ee ‡ nico.voicu@unitbv.ro arXiv:1812.11161v3 [gr-qc] 1 Oct 2019 3 The ones considered in [44,45] do not fit in our definition. We do not consider these Finsler spacetimes since for them the curvature tensor, which defines the dynamics of Finsler spacetimes, is not necessarily defined for all physical observer directions, which in our definition is given by the conic subbundle T . The definition could be relaxed so as to include the possibility of having an observer direction where curvature is not defined, but in this case, a thorough analysis of whether the evolution of spacetime is causal, as seen by the respective observer, is needed. This is the subject for future work.

We propose a new model for the description of a gravitating multi particle system, viewed as a kinetic gas. The properties of the, colliding or non-colliding, particles are encoded into a so called one-particle distribution function, which is a density on the space of allowed particle positions and velocities, i.e. on the tangent bundle of the spacetime manifold. We argue that an appropriate theory of gravity, describing the gravitational field generated by a kinetic gas, must also be modeled on the tangent bundle. The most natural mathematical framework for this task is Finsler spacetime geometry. Following this line of argumentation, we construct a coupling between the kinetic gas and a recently proposed Finsler geometric extension of general relativity. Additionally, we explicitly show how the coordinate invariance of the action of the kinetic gas leads to a novel formulation of conservation of the energy-momentum distribution of the gas on the tangent bundle.

Along with the construction of non-Lorentz-invariant effective field theories, recent studies which are based on geometric models of Finsler space-time become more and more popular. In this respect, the Finslerian approach to the problem of Lorentz symmetry violation is characterized by the fact that the violation of Lorentz symmetry is not accompanied by a violation of relativistic symmetry. That means, in particular, that preservation of relativistic symmetry can be considered as a rigorous criterion of the viability for any non-Lorentz-invariant effective field theory. Although this paper has a review character, it contains (with few exceptions) only those results on Finsler extensions of relativity theory, that were obtained by the authors.

Applying the cosmological principle to Finsler spacetimes, we identify the Lie Algebra of symmetry generators of spatially homogeneous and isotropic Finsler geometries, thus generalising Friedmann-Lemaître-Robertson-Walker geometry. In particular, we find the most general spatially homogeneous and isotropic Berwald spacetimes, which are Finsler spacetimes that can be regarded as closest to pseudo-Riemannian geometry. They are defined by a Finsler Lagrangian built from a zero-homogeneous function on the tangent bundle, which encodes the velocity dependence of the Finsler Lagrangian in a very specific way. The obtained cosmological Berwald geometries are candidates for the description of the geometry of the universe, when they are obtained as solutions from a Finsler gravity equation.

We investigate whether Szabo’s metrizability theorem can be extended to Finsler spaces of indefinite signature. For smooth, positive definite Finsler metrics, this important theorem states that, if the metric is of Berwald type (i.e., its Chern–Rund connection defines an affine connection on the underlying manifold), then it is affinely equivalent to a Riemann space, meaning that its affine connection is the Levi–Civita connection of some Riemannian metric. We show for the first time that this result does not extend to general Finsler spacetimes. More precisely, we find a large class of Berwald spacetimes for which the Ricci tensor of the affine connection is not symmetric. The fundamental difference from positive definite Finsler spaces that makes such an asymmetry possible is the fact that generally, Finsler spacetimes satisfy certain smoothness properties only on a proper conic subset of the slit tangent bundle. Indeed, we prove that when the Finsler Lagrangian is smooth on the entire slit tangent bundle, the Ricci tensor must necessarily be symmetric. For large classes of Finsler spacetimes, however, the Berwald property does not imply that the affine structure is equivalent to the affine structure of a pseudo-Riemannian metric. Instead, the affine structure is that of a metric-affine geometry with vanishing torsion.

We find the generalization of Einstein equations to Finsler spaces by variational means and, based on the invariance of the Finslerian Hilbert action to infinitesimal transformations, we find the analogous of the energymomentum conservation law in these spaces.

scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.

hi@scite.ai

10624 S. Eastern Ave., Ste. A-614

Henderson, NV 89052, USA

Copyright © 2024 scite LLC. All rights reserved.

Made with 💙 for researchers

Part of the Research Solutions Family.