Long bones (femora, humeri) are the most abundant remains of sauropod dinosaurs. Their length is a good proxy for body length and body mass, and their histology is informative about ontogenetic age. Here we provide a comparative assessment of histologic changes in growth series of several sauropod taxa, including diplodocids (Apatosaurus, Diplodocus, indeterminate Diplodocinae from the Tendaguru Beds and from the Morrison Formation), basal macronarians (Camarasaurus, Brachiosaurus, Europasaurus), and titanosaurs (Phuwiangosaurus, Ampelosaurus). A total of 167 long bones, mainly humeri and femora, and 18 limb girdle bones were sampled. Sampling was performed by core drilling at prescribed locations at midshaft, and 13 histologic ontogenetic stages (HOS stages) were recognized. Because growth of all sauropod long bones is quite uniform, with laminar fibrolamellar bone being the dominant tissue, HOS stages could be recognized across taxa, although with minor differences. Histologic ontogenetic stages generally correlate closely with body size and thus provide a means to resolve important issue like the ontogenetic status of questionable specimens. We hypothesize that sexual maturity was attained at HOS-8, well before maximum size was attained, but we did not find sexually differentiated growth trajectories subsequent to HOS-8. On the basis of HOS stages, we detected two morphotypes in the Camarasaurus sample, a small one (type 1) and a larger one (type 2), presumably representing different species or sexual dimorphism.
The synthesis and structure of a new flexible metal-organic framework Ni(2)(2,6-ndc)(2)(dabco) (DUT-8(Ni), DUT = Dresden University of Technology, 2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]octane) as well as its characterization by gas adsorption and (129)Xe NMR spectroscopy is described. The compound shows reversible structural transformation without loss of crystallinity upon solvent removal and physisorption of several gases. Xenon adsorption studies combined with (129)Xe NMR spectroscopy turn out to be favorable methods for the detection and characterization of the so-called "gate-pressure" effect in this novel MOF material. The linewidth and chemical shift of the (129)Xe NMR signal are shown to be very sensitive parameters for the detection of this structural transition from a narrow pore system with low porosity to a wide pore state. The transition and threshold temperature is clearly detected.
The synthesis and structural flexibility of the metal-organic frameworks M 2 (2,6-ndc) 2 (dabco) (DUT-8(M), M ¼ Ni, Co, Cu, Zn; 2,6-ndc ¼ 2,6-naphthalenedicarboxylate, dabco ¼ 1,4-diazabicyclo[2.2.2] octane) as well as their characterization by gas adsorption, 129 Xe NMR and 13 C MAS NMR spectroscopy are described. Depending on the integrated metal atom the compounds show reversible (DUT-8(Ni), DUT-8(Co)), non-reversible (DUT-8(Zn)) or no (DUT-8(Cu)) structural transformation upon solvent removal and/or physisorption of several gases. DUT-8(Co) exhibits a similar structural transformation by solvent removal and adsorption behavior as observed for DUT-8(Ni). DUT-8(Zn) undergoes an irreversible structural change caused by solvent removal. The non-flexible copper containing MOF reveals the best performance concerning porosity and gas storage capacities within the DUT-8 series. Xenon adsorption studies combined with 129 Xe NMR spectroscopy are used to study the flexibility of the DUT-8 compounds. 129 Xe chemical shift and line width strongly depend on the metal atom. Solid-state 13 C NMR spectroscopy has been applied in order to further characterize the organic parts of the DUT-8 frameworks. While DUT-8(Ni) exhibits narrow, well-resolved lines in its ''as made'' state, the signals of are broadened and shifted over an unusually wide chemical shift range (À72 to 717 ppm). No detectable signals are found in DUT-8(Cu) indicating significantly changed internal dynamics compared to and .
Long-bone histology indicates that the most common early dinosaur, the prosauropod Plateosaurus engelhardti from the Upper Triassic of Central Europe, had variable life histories. Although Plateosaurus grew at the fast rates typical for dinosaurs, as indicated by fibrolamellar bone, qualitative (growth stop) and quantitative (growth-mark counts) features of its histology are poorly correlated with body size. Individual life histories of P. engelhardti were influenced by environmental factors, as in modern ectothermic reptiles, but not in mammals, birds, or other dinosaurs.
BackgroundSauropterygia is an abundant and successful group of Triassic marine reptiles. Phylogenetic relationships of Triassic Sauropterygia have always been unstable and recently questioned. Although specimens occur in high numbers, the main problems are rareness of diagnostic material from the Germanic Basin and uniformity of postcranial morphology of eosauropterygians. In the current paper, morphotypes of humeri along with their corresponding bone histologies for Lower to Middle Muschelkalk sauropterygians are described and interpreted for the first time in a phylogenetic context.Methodology/Principal Findings
Nothosaurus shows a typical plesiomorphic lamellar-zonal bone type, but varying growth patterns and the occurrence of a new humerus morphotype point to a higher taxonomic diversity than was known. In contrast to the enormous morphological variability of eosauropterygian humeri not assigned to Nothosaurus, their long bone histology is relatively uniform and can be divided into two histotypes. Unexpectedly, both of these histotypes reveal abundant fibrolamellar bone throughout the cortex. This pushes the origin of fibrolamellar bone in Sauropterygia back from the Cretaceous to the early Middle Triassic (early Anisian). Histotype A is assigned to Cymatosaurus, a basal member of the Pistosauroidea, which includes the plesiosaurs as derived members. Histotype B is related to the pachypleurosaur Anarosaurus. Contrary to these new finds, the stratigraphically younger pachypleurosaur Neusticosaurus shows the plesiomorphic lamellar-zonal bone type and an incomplete endochondral ossification, like Nothosaurus.Conclusions/SignificanceHistological results hypothetically discussed in a phylogenetical context have a large impact on the current phylogenetic hypothesis of Sauropterygia, leaving the pachypleurosaurs polyphyletic. On the basis of histological data, Neusticosaurus would be related to Nothosaurus, whereas Anarosaurus would follow the pistosaur clade. Furthermore, the presence of fibrolamellar bone, which is accompanied with increased growth rates and presumably even with increased metabolic rates, already in Anarosaurus and Cymatosaurus can explain the success of the Pistosauroidea, the only sauropterygian group to survive into the Jurassic and give rise to the pelagic plesiosaur radiation.
The quest for advanced designer adsorbents for air filtration and monitoring hazardous trace gases has recently been more and more driven by the need to ensure clean air in indoor, outdoor, and industrial environments. How to increase safety with regard to personal protection in the event of hazardous gas exposure is a critical question for an ever-growing population spending most of their lifetime indoors, but is also crucial for the chemical industry in order to protect future generations of employees from potential hazards. Metal-organic frameworks (MOFs) are already quite advanced and promising in terms of capacity and specific affinity to overcome limitations of current adsorbent materials for trace and toxic gas adsorption. Due to their advantageous features (e.g., high specific surface area, catalytic activity, tailorable pore sizes, structural diversity, and range of chemical and physical properties), MOFs offer a high potential as adsorbents for air filtration and monitoring of hazardous trace gases. Three advanced topics are considered here, in applying MOFs for selective adsorption: (i) toxic gas adsorption toward filtration for respiratory protection as well as indoor and cabin air, (ii) enrichment of hazardous gases using MOFs, and (iii) MOFs as sensors for toxic trace gases and explosives.
The "gate opening" mechanism in the highly flexible MOF Ni2(2,6-ndc)2dabco (DUT-8(Ni), DUT = Dresden University of Technology) with unprecedented unit cell volume change was elucidated in detail using combined single crystal X-ray diffraction, in situ XRD and EXAFS techniques. The analysis of the crystal structures of closed pore (cp) and large pore (lp) phases reveals a drastic and unique unit cell volume expansion of up to 254%, caused by adsorption of gases, surpassing other gas-pressure switchable MOFs significantly. To a certain extent, the structural deformation is specific for the guest molecule triggering the transformation due to subtle differences in adsorption enthalpy, shape, and kinetic diameter of the guest. Combined adsorption and powder diffraction experiments using nitrogen (77 K), carbon dioxide (195 K), and n-butane (272.5 K) as a probe molecules reveal a one-step structural transformation from cp to lp. In contrast, adsorption of ethane (185 K) or ethylene (169 K) results in a two-step transformation with the formation of intermediate phases. In situ EXAFS during nitrogen adsorption was used for the first time to monitor the local coordination geometry of the metal atoms during the structural transformation in flexible MOFs revealing a unique local deformation of the nickel-based paddle-wheel node.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.