The human face is central to our everyday social interactions. Recent studies have shown that while gazing at faces, each one of us has a particular eye-scanning pattern, highly stable across time. Although variables such as culture or personality have been shown to modulate gaze behavior, we still don't know what shapes these idiosyncrasies. Moreover, most previous observations rely on static analyses of small-sized eye-position data sets averaged across time. Here, we probe the temporal dynamics of gaze to explore what information can be extracted about the observers and what is being observed. Controlling for any stimuli effect, we demonstrate that among many individual characteristics, the gender of both the participant (gazer) and the person being observed (actor) are the factors that most influence gaze patterns during face exploration. We record and exploit the largest set of eye-tracking data (405 participants, 58 nationalities) from participants watching videos of another person. Using novel data-mining techniques, we show that female gazers follow a much more exploratory scanning strategy than males. Moreover, female gazers watching female actresses look more at the eye on the left side. These results have strong implications in every field using gaze-based models from computer vision to clinical psychology.
Most animals look at each other to signal threat or interest. In humans, this social interaction is usually punctuated with brief periods of mutual eye contact. Deviations from this pattern of gazing behaviour generally make us feel uncomfortable and are a defining characteristic of clinical conditions such as autism or schizophrenia, yet it is unclear what constitutes normal eye contact. Here, we measured, across a wide range of ages, cultures and personality types, the period of direct gaze that feels comfortable and examined whether autonomic factors linked to arousal were indicative of people's preferred amount of eye contact. Surprisingly, we find that preferred period of gaze duration is not dependent on fundamental characteristics such as gender, personality traits or attractiveness. However, we do find that subtle pupillary changes, indicative of physiological arousal, correlate with the amount of eye contact people find comfortable. Specifically, people preferring longer durations of eye contact display faster increases in pupil size when viewing another person than those preferring shorter durations. These results reveal that a person's preferred duration of eye contact is signalled by physiological indices (pupil dilation) beyond volitional control that may play a modulatory role in gaze behaviour.
Several studies show that visual stimuli traveling at higher velocities are overestimated with respect to slower, or stationary, stimuli of equivalent physical duration. This effect-time dilation-relates more in general to several accounts highlighting a quantitative relationship between the amount of changes a stimulus is subject to and the perceived duration: faster stimuli, subject to a greater number of changes in space, lead to overestimated durations of displacement. In the present paper we provide evidence of a new illusory effect, in which the apparent duration of a sensory event is affected by the way a constant number of changes are delivered in time, or in time and space. Participants judged accelerating and decelerating sequences of stationary flickering stimuli (Experiments 1 and 3) and accelerating and decelerating horizontally drifting visual stimuli (Experiment 2) on the fronto-parallel plane. Acceleration and deceleration were achieved by irregular sequencing of events in time (anisochronous flicker rate) or irregular sequencing of events in time and space (anisochronous and/or anisometric drift). Despite being characterized by the same amounts of visual changes, accelerating and decelerating sequences lead to opposite duration biases (underestimation and overestimation errors, respectively). We refer to this effect in terms of ATI: Aniso-Time-Illusion. This bias was observed in both subsecond (760 ms) and suprasecond ranges (1900 ms). These data highlight how the spatio-temporal evolution of dynamic visual events, asides the overall quantity of changes they are subject to, affect the perceived amount of time they require to unfold.
Filmmakers of panoramic videos frequently struggle to guide attention to Regions of Interest (ROIs) due to consumers' freedom to explore. Some researchers hypothesize that peripheral cues attract reflexive/involuntary attention whereas cues within central vision engage and direct voluntary attention. This mixed-methods study evaluated the effectiveness of using central arrows and peripheral flickers to guide and focus attention in panoramic videos. Twentyfive adults wore a head-mounted display with an eye tracker and were guided to 14 ROIs in two panoramic videos. No significant differences emerged in regard to the number of followed cues, the time taken to reach and observe ROIs, ROI-related memory and user engagement. However, participants' gaze travelled a significantly greater distance toward ROIs within the first 500 ms after flickeronsets compared to arrow-onsets. Nevertheless, most users preferred the arrow and perceived it as significantly more rewarding than the flicker. The findings imply that traditional attention paradigms are not entirely applicable to panoramic videos, as peripheral cues appear to engage both involuntary and voluntary attention. Theoretical and practical implications as well as limitations are discussed.
Can subjective belief about one's own perceptual competence change one's perception? To address this question, we investigated the influence of self-efficacy on sensory discrimination in two low-level visual tasks: contrast and orientation discrimination. We utilised a pre-post manipulation approach whereby two experimental groups (high and low self-efficacy) and a control group made objective perceptual judgments on the contrast or the orientation of the visual stimuli. High and low self-efficacy were induced by the provision of fake social-comparative performance feedback and fictional research findings. Subsequently, the post-manipulation phase was performed to assess changes in visual discrimination thresholds as a function of the self-efficacy manipulations. The results showed that the high self-efficacy group demonstrated greater improvement in visual discrimination sensitivity compared to both the low self-efficacy and control groups. These findings suggest that subjective beliefs about one's own perceptual competence can affect low-level visual processing.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.