Background: Diffuse intrinsic pontine glioma (DIPG) is an aggressive pediatric brainstem tumor. Most DIPGs harbor a histone H3 mutation, which alters histone post-translational modification (PTM) states and transcription. Here, we employed quantitative proteomic analysis to elucidate the impact of H3.3K27M mutation, as well as radiation and bromodomain inhibition (BRDi) with JQ1, on DIPG PTM profiles. Methods: We performed targeted mass spectroscopy on H3.3K27M mutant and wild-type tissues (n=12) and cell lines (n=7). Results: We found 29.2% and 26.4% of total H3.3K27 peptides were H3.3K27M in mutant DIPG tumor cell lines and tissue specimens, respectively. Significant differences in distinct PTMs were observed in H3.3K27M specimens, including at H3K27, H3K36, and H4K16 amino acid residues. In addition, H3.3K27me1 and H4K16ac were the most significantly distinct modifications in H3.3K27M mutant tumors relative to wild-type. Further, H3.3K36me2 was the most abundant modification co-occurring on the H3.3K27M mutant peptide in DIPG tissue, while H4K16ac was the most acetylated residue. Radiation treatment caused changes in PTM abundance in vitro , including increased H3K9me3. BRDi with JQ1 resulted in increased mono- and di-methylation of H3.1K27, H3.3K27, H3.3K36 and H4K20 in vitro . Conclusion: Taken together, our findings provide insight into the effects of the H3K27M mutation on Histone modification states and response to treatment, and suggest H3K36me2 and H4K16ac in DIPG may represent unique tumor epigenetic signatures for targeted therapy.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers