Pancreatic cancer is a disease with an extremely poor prognosis. The acquisition of invasion properties in pancreatic cancer is accompanied by the process of epithelial-mesenchymal transition (EMT). Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is emerging as an important determinant of the malignant phenotype in a range of cancers, including pancreatic cancer. Therefore, the aim of this study was to evaluate the potential involvement of CEACAM6 in the invasion and metastasis of pancreatic cancer cells via EMT regulation. The results of our study showed a positive association between CEACAM6 expression and poor prognosis of pancreatic cancer, differentiation and lymph node metastasis. Elevated levels of CEACAM6 in pancreatic cancer cells promoted EMT, migration and invasion in vitro and metastasis in animal models, whereas shRNA-mediated CEACAM6 knockdown had the opposite effect. Furthermore, we demonstrated that miR-29a/b/c specific for CEACAM6 could regulate its expression at the post-transcriptional level. Collectively, our findings identified CEACAM6, which is regulated by miR-29a/b/c, as an important positive regulator of EMT in pancreatic cancer offering an explanation for how elevated levels of CEACAM6 are likely to contribute to the highly metastatic phenotype of pancreatic cancer.
Vasohibin-2 (VASH2) is an angiogenic factor, and has been previously reported to be a cancer-related gene, with cytoplasmic and karyotypic forms. In the current study VASH2 expression in human breast cancer tissue and adjacent non-cancerous tissue was investigated with immunohistochemistry. MCF-7 and BT474 human breast cancer cells were transfected with lentiviral constructs to generate in vitro VASH2 overexpression and knockdown models. In addition, BALB/cA nude mice were inoculated subcutaneously with transfected cells to generate in vivo models of VASH2 overexpression and knockdown. The effect of VASH2 on cell proliferation was investigated using a bromodeoxyuridine assay in vitro and immunohistochemistry of Ki67 in xenograft tumors. Growth factors were investigated using a human growth factor array, and certain factors were further confirmed by an immunoblot. The results indicated that the expression level of cytoplasmic VASH2 was higher in breast cancer tissues with a Ki67 (a proliferation marker) level of ≥14%, compared with tissues with a Ki67 level of <14%. VASH2 induced proliferation in vitro and in vivo. Four growth factors activated by VASH2 were identified as follows: Fibroblast growth factor 2 (FGF2), growth/differentiation factor-15 (GDF15), insulin-like growth factor-binding protein (IGFBP)3 and IGFBP6. FGF2 and GDF15 may contribute to VASH2-induced proliferation. The current study identified a novel role for VASH2 in human breast cancer, and this knowledge suggests that VASH2 may be a novel target in breast cancer treatment.
Vasohibin-2 was recently identified as an important pro-angiogenesis factor in solid tumor and intracellular localization of its variants is important for elucidating the downstream mechanism(s) of its effects. Currently there are no reported antibodies affordable for intracellular localization. The aim of this study was to generate and characterize polyclonal antibodies against Vasohibin-2 and to determine the intracellular localization of Vasohibin-2. In this study, two polypeptides were synthesized and one prokaryotic Vasohibin-2 recombinant protein was custom-made. New Zealand rabbits were immunized with the polypeptide mixture and prokaryotic recombinant protein, respectively. The purified antibodies from the antiserum were validated by ELISA, western blotting (WB), immunofluorescence (IF), immunohistochemistry (IHC) and immunoprecipitation (IP). In order to determine intracellular localization, the cytoplasmic and nuclear proteins of the human liver cancer cell line HepG2 were isolated for the detection of Vasohibin-2 by western blotting. Vasohibin-2 cDNA, coding for 311 and 355 amino acid residues, fused with or without a DDK/V5 tag at the c-terminus, respectively, was cloned into the Lv-CMV-EGFP vector. Lentiviruses were successfully packaged. Vasohibin-2-overexpressing HepG2-VASH2 (355 amino acid residues) and HepG2-VASH2-V5 (311 amino acid residues fused with V5 tag at the c-terminus) human liver cancer cell lines were established. Approximately 1-2x106 HepG2, HepG2-VASH2 and HepG2-VASH2-V5 cells were injected subcutaneously into the flanks of BALB/c nude mice. Xenograft tumors were harvested for immunohistochemistry. HepG2 cells were transiently transfected with the Lv-CMV-EGFP vectors containing Vasohibin-2 cDNA (coding for 311/355 amino acid residues with a DDK tag at the c-terminal), followed by anti-DDK immunofluorescence. The antibodies obtained were able to detect human VASH2 successfully as applied in western blotting, IF, IHC and IP. Results from IF, IHC and WB (post cytoplasmic/nuclear protein isolation) showed a quite different intracellular localization of VASH2 protein. The VASH2 (with 355 amino acid residues) was located in the cytoplasm while VASH2 (with 311 amino acid residues) was located in the nucleus. The former was found to be a relatively low abundance protein. We successfully generated three rabbit anti-human Vasohibin-2 polyclonal antibodies which can be used for western blotting, IF, IP and IHC. These antibodies will provide a convenient tool for further studies on Vasohibin-2. This is the first study to report differences in the intracellular localization of the VASH2 protein and, hence, a new research direction on the study of VASH2.
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease and is usually resistant to chemotherapy. MicroRNA‑181b (miR-181b) has been reported to be associated with chemoresistance in various types of cancer. In this study, we investigated the effects of miR-181b on the chemosensitivity of PDAC cells to gemcitabine and the underlying molecular events. miR-181b mimics and inhibitors were synthesized for transient gene transfection in vitro. Lentivirus carrying miR-181b mimics were used to infect PDAC cells for nude mouse xenograft assays by implanting infected PDAC cells into recipient mice. Cell viability was determined by MTT assays, while gene expression was assessed using qRT-PCR, western blot analysis and enzyme-linked immunosorbent assay (ELISA). miR-181b targeting BCL-2 expression was assessed by a dual-luciferase activity assay. The data showed that miRNA-181b expression sensitized PDAC cells to gemcitabine treatment. Although gemcitabine-resistant PDAC cell sublines (SW1990/GR and CFPAC-1/GR) expressed higher levels of miRNA-181b, gemcitabine induced higher levels of apoptosis in PDAC cells transfected with miRNA-181b mimics. The nude mouse xenograft assay data showed that miR-181b transfection also sensitized the cells to gemcitabine treatment in vivo. Molecularly, bioinformatics data predicted that miR-181b was able to bind to BCL-2 mRNA 3'UTR. The dual luciferase activity assay revealed that miRNA-181b downregulated BCL-2 expression. The results from western blot analysis showed a reduced BCL-2 expression following miR-181b transfection but an enhanced caspase-3 activity in miRNA-181b mimic-transfected PDAC cells. This study demonstrates that miRNA-181b sensitizes PDAC cells to gemcitabine by targeting BCL-2.
Objectives: Hyperinsulinemia is a risk factor for pancreatic cancer, but the function of insulin in carcinogenesis is unclear, so this study aimed to elucidate the carcinogenic effects of insulin and the synergistic effect with the KRAS mutation in the early stage of pancreatic cancer. Materials and methods:A pair of immortalized human pancreatic duct-derived cells, hTERT-HPNE E6/E7/st (HPNE) and its oncogenic KRAS G12D variant, hTERT-HPNE E6/ E7/KRAS G12D /st (HPNE-mut-KRAS), were used to investigate the effect of insulin. Cell proliferation, migration and invasion were assessed using Cell Counting Kit-8 and transwell assays, respectively. The expression of E-cadherin, N-cadherin, vimentin and matrix metalloproteinases (MMP-2, MMP-7 and MMP-9) was evaluated by Western blotting and/or qRT-PCR. The gelatinase activity of MMP-2 and MMP-9 in conditioned media was detected using gelatin zymography. The phosphorylation status of AKT, GSK3β, p38, JNK and ERK1/2 MAPK was determined by Western blotting. Results: The migration and invasion ability of HPNE cells was increased after the intro-duction of the mutated KRAS gene, together with an increased expression of MMP-2.These effects were further enhanced by the simultaneous administration of insulin.The use of MMP-2 siRNA confirmed that MMP-2 was involved in the regulation of cell invasion. Furthermore, there was a concentration-and time-dependent increase in gelatinase activity after insulin treatment, which could be reversed by an insulin receptor tyrosine kinase inhibitor (HNMPA-(AM) 3 ). In addition, insulin markedly enhanced the phosphorylation of PI3K/AKT, p38, JNK and ERK1/2 MAPK pathways, with wortmannin or LY294002 (a PI3K-specific inhibitor) and PD98059 (a MEK1-specific inhibitor) significantly inhibiting the insulin-induced increase in MMP-2 gelatinolytic activity.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers