Virus-free, transient gene expression (TGE) in High Five cells was recently presented as an efficient protein production method. However, published TGE protocols have not been standardized to a general protocol. Therefore, reproducibility and implementation of the method in other labs remains difficult. The aim of this study is to analyse the parameters determining the reproducibility of the TGE in insect cells. Here, we identified that using linear 40 kDa PEI instead of 25 kDa PEI was one of the most important aspects to improve TGE. Furthermore, DNA amount, DNA:PEI ratio, growth phase of the cells before transfection, passage number, the origin of the High-Five cell isolates and the type of cultivation medium were considered. Interestingly, a correlation of the passage number to the DNA content of single cells (ploidy) and to the transfection efficacy could be shown. The optimal conditions for critical parameters were used to establish a robust TGE method. Finally, we compared the achieved product yields in High Five cells using our improved TGE method with both the baculoviral expression system and TGE in the mammalian HEK293-6E cell line. In conclusion, the presented robust TGE protocol in High Five cells is easy to establish and produces ample amounts of high-quality recombinant protein, bridging the gap in expression level of this method to the well-established mammalian TGE in HEK293 cells as well as to the baculoviral expression vector system (BEVS).
The applicability of a protein-free medium for the production of recombinant human interleukin-2 with baby hamster kidney cells in airlift bioreactors was investigated. For this purpose, a BHK-21 cell line, adapted to grow and produce in protein-free SMIF7 medium without forming spheroids in membrane-aerated bubble-free bioreactors, was used as the producer cell line. First, cultivation of the cells was established at a 20-L scale using an internal loop airlift bioreactor system. During the culturing process the medium formulation was optimized according to the specific requirements associated with cultivation of mammalian cells under protein-free conditions in a bubble-aerated system. The effects of the addition of an antifoam agent on growth, viability, productivity, metabolic rates, and release of lactate dehydrogenase were investigated. Although it was possible to establish cultivation and production at a 20-L scale without the use of antifoaming substances, the addition of 0.002% silicon-oil-based antifoaming reagent improved the cultivation system by completely preventing foam formation. This reduced the release of lactate dehydrogenase activity to the level found in bubble-free aerated stirred tank membrane bioreactors and led to a reduction in generation doubling times by about 5 h (17%). Using the optimized medium formulation, cells were cultivated at a 1000-L scale, resulting in a culture performance comparable to the 20-L airlift bioreactor. For comparison, cultivations with protein-containing SMIF7 medium were carried out at 20- and 1000-L scales. The application of protein supplements did not lead to a significant improvement in the cultivation conditions. The results were also compared with experiments performed in a bubble-free aerated stirred tank membrane bioreactor to evaluate the influence of bubbles on the investigated culture parameters. The data implied a higher metabolic activity of the cells in airlift bioreactors with a 150% higher glucose consumption rate. The results of this study clearly demonstrate the applicability of a protein-free chemically defined medium for the production of recombinant proteins with BHK cells in airlift bioreactors.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers