MicroRNAs (miR) are a class of small (f21 nucleotide) noncoding RNAs that, in general, negatively regulate gene expression. Some miRs harboring CGIs undergo methylationmediated silencing, a characteristic of many tumor suppressor genes. To identify such miRs in liver cancer, the miRNA expression profile was analyzed in hepatocellular carcinoma (HCC) cell lines treated with 5-azacytidine (DNA hypomethylating agent) and/or trichostatin A (histone deacetylase inhibitor). The results showed that these epigenetic drugs differentially regulate expression of a few miRs, particularly miR-1-1, in HCC cells. The CGI spanning exon 1 and intron 1 of miR-1-1 was methylated in HCC cell lines and in primary human HCCs but not in matching liver tissues. The miR-1-1 gene was hypomethylated and activated in DNMT1À/À HCT 116 cells but not in DNMT3B null cells, indicating a key role for DNMT1 in its methylation. miR-1 expression was also markedly reduced in primary human hepatocellular carcinomas compared with matching normal liver tissues. Ectopic expression of miR-1 in HCC cells inhibited cell growth and reduced replication potential and clonogenic survival. The expression of FoxP1 and MET harboring three and two miR-1 cognate sites, respectively, in their respective 3 ¶-untranslated regions, was markedly reduced by ectopic miR-1. Up-regulation of several miR-1 targets including FoxP1, MET, and HDAC4 in primary human HCCs and down-regulation of their expression in 5-AzaC-treated HCC cells suggest their role in hepatocarcinogenesis. The inhibition of cell cycle progression and induction of apoptosis after re-expression of miR-1 are some of the mechanisms by which DNA hypomethylating agents suppress hepatocarcinoma cell growth. [Cancer Res 2008;68(13):5049-58]
Cannabinoids have been reported to possess antitumorogenic activity. Not much is known, however, about the effects and mechanism of action of synthetic nonpsychotic cannabinoids on breast cancer growth and metastasis. We have shown that the cannabinoid receptors CB1 and CB2 are overexpressed in primary human breast tumors compared with normal breast tissue. We have also observed that the breast cancer cell lines MDA-MB231, MDA-MB231-luc, and MDA-MB468 express CB1 and CB2 receptors. Furthermore, we have shown that the CB2 synthetic agonist JWH-133 and the CB1 and CB2 agonist WIN-55,212-2 inhibit cell proliferation and migration under in vitro conditions. These results were confirmed in vivo in various mouse model systems. Mice treated with JWH-133 or WIN-55,212-2 showed a 40% to 50% reduction in tumor growth and a 65% to 80% reduction in lung metastasis. These effects were reversed by CB1 and CB2 antagonists AM 251 and SR144528, respectively, suggesting involvement of CB1 and CB2 receptors. In addition, the CB2 agonist JWH-133 was shown to delay and reduce mammary gland tumors in the polyoma middle T oncoprotein (PyMT) transgenic mouse model system. Upon further elucidation, we observed that JWH-133 and WIN-55,212-2 mediate the breast tumor-suppressive effects via a coordinated regulation of cyclooxygenase-2/ prostaglandin E2 signaling pathways and induction of apoptosis. These results indicate that CB1 and CB2 receptors could be used to develop novel therapeutic strategies against breast cancer growth and metastasis.
CXCL8 (also known as IL-8) activates CXCR1 and CXCR2 to mediate neutrophil recruitment and trigger cytotoxic effect at sites of infection. Under physiological conditions, CXCL8 could exist as monomers, dimers, or a mixture of monomers and dimers. Therefore, both forms of CXCL8 could interact with CXCR1 and CXCR2 with different affinities and potencies to mediate different cellular responses. In the present study, we have used a “trapped” nonassociating monomer (L25NMe) and a nondissociating dimer (R26C) to investigate their activities for human neutrophils that express both receptors and for RBL-2H3 cells stably expressing either CXCR1(RBL-CXCR1) or CXCR2 (RBL-CXCR2). The monomer was more active than the dimer for activities such as intracellular Ca2+ mobilization, phosphoinositide hydrolysis, chemotaxis. and exocytosis. Receptor regulation, however, is distinct for each receptor. The rate of monomer-mediated regulation of CXCR1 is greater for activities such as phosphorylation, desensitization, β-arrestin translocation, and internalization. In contrast, for CXCR2, both monomeric and dimeric CXCL8 mediate these activities to a similar extent. Interestingly, receptor-mediated signal-regulated kinase (ERK) phosphorylation in response to all three CXCL8 variants was more sustained for CXCR2 relative to CXCR1. Taken together, the results indicate that the CXCL8 monomer and dimer differentially activate and regulate CXCR1 and CXCR2 receptors. These distinct properties of the ligand and the receptors play a critical role in orchestrating neutrophil recruitment and eliciting cytotoxic activity during an inflammatory response.
Lung cancer is the leading cause of cancer-related deaths both in men and women in the United States, with an incidence of ϳ213,000 new cases/year (1). Approximately 80% of lung cancers are classified histopathologically as non-small cell lung cancers. At early stages of non-small cell lung cancer, the only treatment is surgery, with a 5-year overall survival rate of 40% (2), whereas chemotherapy is mostly employed for small cell lung cancer. The majority of patients have developed an aggressive form of the disease by the time of diagnosis, limiting the scope for therapeutic intervention. At this stage, several genetic and epigenetic changes take place, resulting in epithelial cell hyperplasia and, eventually, dysplasia. These changes are attributed to silencing of tumor suppressor genes, dysregulation of proto-oncogenes, and an up-regulation of genes that promote cell growth and transformation and ultimately tumor development (3).
The anti-tumor role and mechanisms of Cannabidiol (CBD), a non-psychotropic cannabinoid compound, are not well studied especially in triple-negative breast cancer (TNBC). In the present study, we analyzed CBD’s anti-tumorigenic activity against highly aggressive breast cancer cell lines including TNBC subtype. We show here -for the first time- that CBD significantly inhibits epidermal growth factor (EGF)-induced proliferation and chemotaxis of breast cancer cells. Further studies revealed that CBD inhibits EGF-induced activation of EGFR, ERK, AKT and NF-kB signaling pathways as well as MMP2 and MMP9 secretion. In addition, we demonstrated that CBD inhibits tumor growth and metastasis in different mouse model systems. Analysis of molecular mechanisms revealed that CBD significantly inhibits the recruitment of tumor-associated macrophages in primary tumor stroma and secondary lung metastases. Similarly, our in vitro studies showed a significant reduction of the number of migrated RAW 264.7 cells towards the conditioned medium of CBD-treated cancer cells. The conditioned medium of CBD-treated cancer cells also showed lower levels of GM-CSF and CCL3 cytokines which are important for macrophage recruitment and activation. In summary, our study shows -for the first time- that CBD inhibits breast cancer growth and metastasis through novel mechanisms by inhibiting EGF/EGFR signaling and modulating the tumor microenvironment. These results also indicate that CBD can be used as a novel therapeutic option to inhibit growth and metastasis of highly aggressive breast cancer subtypes including TNBC, which currently have limited therapeutic options and are associated with poor prognosis and low survival rates.
RAGE is a multi-functional receptor implicated in diverse processes including inflammation and cancer. In this study, we report that RAGE expression is upregulated widely in aggressive triple-negative breast cancer cells, both in primary tumors and lymph node metastases. In evaluating the functional contributions of RAGE in breast cancer, we found RAGE-deficient mice displayed a reduced propensity for breast tumor growth. In an established model of lung metastasis, systemic blockade by injection of a RAGE neutralizing antibody inhibited metastasis development. Mechanistic investigations revealed that RAGE bound to the pro-inflammatory ligand S100A7 and mediated its ability to activate ERK, NF-κB and cell migration. In an S100A7 transgenic mouse model of breast cancer (mS100a7a15 mice), administration of either RAGE neutralizing antibody or soluble RAGE was sufficient to inhibit tumor progression and metastasis. In this model, we found that RAGE/S100A7 conditioned the tumor microenvironment by driving the recruitment of MMP9-positive tumor-associated macrophages. Overall, our results highlight RAGE as a candidate biomarker for triple-negative breast cancers and they reveal a functional role for RAGE/S100A7 signaling in linking inflammation to aggressive breast cancer development.
S100A7/Psoriasin, a member of the epidermal differentiation complex, is widely overexpressed in invasive ER-negative (ERα-) breast cancers. However, it has not been established whether S100A7 contributes to breast cancer growth or metastasis. Here, we report the consequences of its expression on inflammatory pathways that impact breast cancer growth. Overexpression of human S100A7 or its murine homolog mS100a7a15, enhanced cell proliferation and upregulated various pro-inflammatory molecules in ERα- breast cancer cells. To examine in vivo effects, we generated mice with an inducible form of mS100a7a15 (MMTV-mS100a7a15 mice). Orthotopic implantation of MVT-1 breast tumor cells into the mammary glands of these mice enhanced tumor growth and metastasis. Compared to uninduced transgenic control mice, the mammary glands of mice where mS100a7a15 was induced exhibited increased ductal hyperplasia and expression of molecules involved in proliferation, signaling, tissue remodeling and macrophage recruitment. Furthermore, tumors and lung tissues obtained from these mice showed further increases in pro-metastatic gene expression and recruitment of tumor-associated macrophages (TAMs). Notably, in vivo depletion of TAM inhibited the effects of mS100a7a15 induction on tumor growth and angiogenesis. Further, introduction of soluble hS100A7 or mS100a7a15 enhanced chemotaxis of macrophages via activation of RAGE receptors. In summary, our work employed a powerful new model system to demonstrate that S100A7 enhances breast tumor growth and metastasis by activating proinflammatory and metastatic pathways.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers