Purpose
The purpose of this paper is to study the natural convection and radiation heat transfer inside Nonagon inclined cavity with variable heated source length, which contains a porous medium saturated with nanofluid in the presence of uniform heat generation or absorption under the effect of uniform magnetic field with variable direction. The shape factor of nano particles is taking account for the model of nanofluid.
Design/methodology/approach
This study is established in two-dimensional space. The 2D numerical study is effectuated with Comsol Multiphysics based on the on the finite element method. The 2D equation system is exposed on dimensionless form taking into account the boundary conditions.
Findings
Results obtained show that the convection heat transfer is ameliorated with the augmentation of heated source length. The convection heat transfer is enhanced by increasing Rayleigh, Darcy numbers and the heated source length; however, it is reduced by rising Hartmann number. The presence of radiation parameter lead to improve the convection heat transfer in the presence of both uniform heat generation/absorption. The average Nusselt number reaches a maximum for an inclination of cavity γ = 45° and a minimum for γ = 60°. Both the increase of the shape factor of nano particles and the solid fraction of nano particles improve the convection heat transfer.
Originality/value
Different studies have been realized to study the heat transfer inside cavity contains porous medium saturated with nanofluid under magnetic field effect. In this work, the Nonagon geometric of cavity studied has never been studied. In addition, the effect of radiation parameter with relation of the shape factor of nanoparticles in the presence of uniform heat generation/absorption on the heat transfer performance have never been investigated. Also, the effect of magnetic field direction with relation of the inclination cavity on heat transfer performance.
In this paper, a 2D numerical study of natural convection heat transfer in a W-shaped inclined enclosure with a variable aspect ratio was performed. The enclosure contained a porous medium saturated with Ag/Al2O3 hybrid nanofluid in the presence of uniform heat generation or absorption under the effect of a uniform magnetic field. The vertical walls of the enclosure were heated differentially; however, the top and bottom walls were kept insulated. The governing equations were solved with numerical simulation software COMSOL Multiphysics which is based on the finite element method. The results showed that the convection heat transfer was improved with the increase of the aspect ratio; the average Nusselt number reached a maximum for an aspect ratio (AR) = 0.7 and the effect of the inclination was practically negligible for an aspect ratio of AR = 0.7. The maximum heat transfer performance was obtained for an inclination of ω = 15 and the minimum is obtained for ω = 30 . The addition of composite nanoparticles ameliorated the convection heat transfer performance. This effect was proportional to the increase of Rayleigh and Darcy numbers, the aspect ratio and the fraction of Ag in the volumetric fraction of nanoparticles.
Purpose
The purpose of this paper is to investigate the enhancement of the performance of bubble absorber using hybrid nanofluid as a cooled NH3/H2O absorption system to reduce their size and to find the best fitting model. A numerical model for ammonia-water bubble absorber was developed to show the influence of operating conditions and design parameters on the absorber performance.
Design/methodology/approach
A finite difference numerical method is used to solve the numerical model. The model is subjected to the inlet conditions of liquid, vapor and coolant flow regimes. The absorber modeling was divided into small elements along the absorber length.
Findings
The model proposed is validated with previously published works. Then agreement between the both is considered as good.
Research limitations/implications
Numerical results/The use of hybrid nanofluids.
Originality/value
The results showed that the hybrid nanofluid is the best cooling medium. Very high heat transfer rates are obtained because of the high thermal conductivity and specific heat of hybrid nanofluid, and consequently, the absorber size decreases. It was also found that the absorber thermal load and the mass absorption flux increase with increasing of solid volume fraction. Also, the existence of an optimal absorber length was revealed, required for complete absorption when using hybrid nanofluid as a cooling medium. It is recommended that using hybrid nanofluid to remove the heat from the absorber is the best candidate for NH3/H2O absorption performance enhancement.
A numerical study on natural convection in a cubical cavity with partial top and bottom openings is performed in this paper. One of the vertical walls of the cavity has higher temperature than that of the opposite one; the remaining walls are insulated perfectly. Three-dimensional simulations of governing equations have been performed using a finite volume technique. The results are presented for different parameters such as opening length and Rayleigh number. It is observed that heat transfer rate and fluid flow can be controlled via opening ratio size and Rayleigh number.
In this paper, a numerical study is performed to investigate the effect of a periodic magnetic field on three-dimensional free convection of MWCNT (Mutli-Walled Carbone Nanotubes)-water/nanofluid. Time-dependent governing equations are solved using the finite volume method under unsteady magnetic field oriented in the x-direction for various Hartmann numbers, oscillation periods, and nanoparticle volume fractions. The aggregation effect is considered in the evaluation of the MWCNT-water/nanofluid thermophysical properties. It is found that oscillation period, the magnitude of the magnetic field, and adding nanoparticles have an important effect on heat transfer, temperature field, and flow structure.
The mixed convection in a cubical cavity with active lateral walls and filled with a graphene–platinum hybrid nanofluid was investigated numerically and exclusively in the present paper. The lateral left and back sidewalls were kept at a hot temperature (Th), while the lateral right and front sidewalls were kept at a cold temperature (Tc). Both the top and bottom walls were assumed thermally insulated. The top wall of the cavity was considered moving with two different directions. The first one is in the x-direction (case I), while the second case is in the z-direction (case II). Also, the case of the fixed top wall was studied just for comparison. The solid volume fractions have been varied as 0 ≤ φ ≤ 0.1%, while the Richardson number is varied in the range of 0.01 ≤Ri ≤ 10. It was found that the maximum average Nusselt number corresponds to the case when the top wall moving in the negative x-direction. Also, the results indicated that the average Nusselt number increases with the increase in the Richardson number and the solid volume fraction.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.