Light scattering was used to measure the time-dependent loss of air entrapped within a submerged microporous hydrophobic surface subjected to different environmental conditions. The loss of trapped air resulted in a measurable decrease in surface reflectivity and the kinetics of the process was determined in real time and compared to surface properties, such as porosity and morphology. The light-scattering results were compared with measurements of skin-friction drag, static contact angle, and contact-angle hysteresis. The in situ, noninvasive optical technique was shown to correlate well with the more conventional methods for quantifying surface hydrophobicity, such as flow slip and contact angle.
Previous studies dedicated to modeling drag reduction and stability of the air-water interface on superhydrophobic surfaces were conducted for microfabricated coatings produced by placing hydrophobic microposts/microridges arranged on a flat surface in aligned or staggered configurations. In this paper, we model the performance of superhydrophobic surfaces comprised of randomly distributed roughness ͑e.g., particles or microposts͒ that resembles natural superhydrophobic surfaces, or those produced via random deposition of hydrophobic particles. Such fabrication method is far less expensive than microfabrication, making the technology more practical for large submerged bodies such as submarines and ships. The present numerical simulations are aimed at improving our understanding of the drag reduction effect and the stability of the air-water interface in terms of the microstructure parameters. For comparison and validation, we have also simulated the flow over superhydrophobic surfaces made up of aligned or staggered microposts for channel flows as well as streamwise or spanwise ridges configurations for pipe flows. The present results are compared with theoretical and experimental studies reported in the literature. In particular, our simulation results are compared with work of Sbragaglia and Prosperetti, and good agreement has been observed for gas fractions up to about 0.9. The numerical simulations indicate that the random distribution of surface roughness has a favorable effect on drag reduction, as long as the gas fraction is kept the same. This effect peaks at about 30% as the gas fraction increases to 0.98. The stability of the meniscus, however, is strongly influenced by the average spacing between the roughness peaks, which needs to be carefully examined before a surface can be recommended for fabrication. It was found that at a given maximum allowable pressure, surfaces with random post distribution produce less drag reduction than those made up of staggered posts.
Previous studies have demonstrated the capability of superhydrophobic surfaces to produce slip flow and drag reduction, which properties hold considerable promise for a broad range of applications. However, in order to implement such surfaces for practical utilizations, environmental factors such as water movement over the surface must be observed and understood. In this work, experiments were carried out to present a proof-of-concept study on the impact of flow on longevity of polystyrene fibrous coatings. The time-dependent hydrophobicity of a submerged coating in a pressure vessel was determined while exposing the coating to a rudimentary wall-jet flow. Rheological studies were also performed to determine the effect of the flow on drag reduction. The results show that the longevity of the surface deteriorates by increasing the flow rate. The flow appears to enhance the dissolution of air into water, which leads to a loss of drag reduction.
Mesh-like fiber mats of polystyrene (PS) were deposited using DC-biased AC-electrospinning. Superhydrophobic surfaces with water contact angles greater than 150and gas fraction values of up to 97% were obtained. Rheological study was conducted on these fiber surfaces and showed a decrease in shear stress when compared with a noncoated surface (no slip), making them excellent candidates for applications requiring the reduction of skin-friction drag in submerged surfaces. We have also shown that addition of a second, low-surface energy polymer to a solution of PS can be used to control the fiber internal porosity depending on the concentration of the second polymer. Contact-angle measurements on mats consisting of porous and nonporous fibers have been used to evaluate the role of the larger spaces between the fibers and the pores on individual fibers on superhydrophobicity.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.