This article aims to review the biomechanical evolution of intramedullary nailing and describe the breakthrough concepts which allowed for nail improvement and its current success. The understanding of this field establishes an adequate background for forthcoming research and allows to infer on the path for future developments on intramedullary nailing. It was not until the 1940s, with the revolutionary Küntscher intramedullary nailing design, that this method was recognized as a widespread medical procedure. Such achievement was established based on the foundations created from intuitionbased experiments and the first biomechanical ideologies. The nail evolved from allowing alignment and stability through press-fit fixation with nail-cortical wall friction to the nowadays nail stability achieved through interlocking screws mechanical linkage between nail and bone. Important landmarks during nail evolution comprise the introduction of flexible reaming, the progress from slotted to non-slotted nails design, the introduction of nail 'dynamization' and the use of titanium alloys as a new nail material. Current biomechanical improvement efforts aim to enhance the boneintramedullary nail system stability. We suggested that benefit would be attained from a better understanding of the ideal mechano-biological environment at the fracture site, and future improvements will emerge from combining mechanics and biological tools.
Combining contributions from engineering and medicine, we highlight the biomechanical turning points in the historical evolution of the intramedullary nailing stabilization technique and discuss the recent innovations concerning increase in bone-implant system stability. Following the earliest attempts, where stabilization of long bone fractures was purely based on intuition, intramedullary nailing evolved from allowing alignment and translational control through press-fit fixation to current clinical widespread acceptance marked by the mechanical linkage between nail and bone with interlocking screws that allow alignment, translation, rotation, and length control. In an attempt to achieve an optimum interfragmentary mechanical environment, recent improvements considered the impact of different biomaterials on bone-implant stiffness. Another strategy considered the increase in the structural stability through the reduction of the number of movements between the different components that constitute the bone-implant system. Intramedullary nail improvements will most likely benefit from merging mechanics and fracture-healing biology by combining surface engineering with sensor tools associated with the innovative progress in wireless technology and with bone-healing biological active agents. Future research should aim at better understanding the ideal mechanobiological environment for each stage of fracture healing in order to allow for intramedullary nail design that satisfies such requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.