The Galactic Archaeology with HERMES (GALAH) survey is a large-scale stellar spectroscopic survey of the Milky Way and designed to deliver chemical information complementary to a large number of stars covered by the Gaia mission. We present the GALAH second public data release (GALAH DR2) containing 342,682 stars. For these stars, the GALAH collaboration provides stellar parameters and abundances for up to 23 elements to the community. Here we present the target selection, observation, data reduction and detailed explanation of how the spectra were analysed to estimate stellar parameters and element abundances. For the stellar analysis, we have used a multi-step approach. We use the physics-driven spectrum synthesis of Spectroscopy Made Easy (SME) to derive stellar labels (T eff , log g, [Fe/H], [X/Fe], v mic , v sin i, A K S ) for a representative training set of stars. This information is then propagated to the whole survey with the data-driven method of The Cannon. Special care has been exercised in the spectral synthesis to only consider spectral lines that have reliable atomic input data and are little affected by blending lines. Departures from local thermodynamic equilibrium (LTE) are considered for several key elements, including Li, O, Na, Mg, Al, Si, and Fe, using 1D stellar atmosphere models. Validation tests including repeat observations, Gaia benchmark stars, open and globular clusters, and K2 asteroseismic targets lend confidence to our methods and results. Combining the GALAH DR2 catalogue with the kinematic information from Gaia will enable a wide range of Galactic Archaeology studies, with unprecedented detail, dimensionality, and scope.
We have conducted a high-resolution imaging study of the Taurus-Auriga star-forming region in order to characterize the primordial outcome of multiple star formation and the extent of the brown dwarf desert. Our survey identified 16 new binary companions to primary stars with masses of 0.25-2.5 M ⊙ , raising the total number of binary pairs (including components of high-order multiples) with separations of 3-5000 AU to 90. We find that ∼2/3-3/4 of all Taurus members are multiple systems of two or more stars, while the other ∼1/4-1/3 appear to have formed as single stars; the distribution of high-order multiplicity suggests that fragmentation into a wide binary has no impact on the subsequent probability that either component will fragment again. The separation distribution for solar-type stars (0.7-2.5 M ⊙ ) is nearly log-flat over separations of 3-5000 AU, but lower-mass stars (0.25-0.7 M ⊙ ) show a paucity of binary companions with separations of 200 AU. Across this full mass range, companion masses are well described with a linear-flat function; all system mass ratios (q = M B /M A ) are equally probable, apparently including substellar companions. Our results are broadly consistent with the two expected modes of binary formation (freefall fragmentation on large scales and disk fragmentation on small scales), but the distributions provide some clues as to the epochs at which the companions are likely to form.
Young and directly imaged exoplanets offer critical tests of planet-formation models that are not matched by RV surveys of mature stars. These targets have been extremely elusive to date, with no exoplanets younger than 10-20 Myr and only a handful of direct-imaged exoplanets at all ages. We report the direct imaging discovery of a likely (proto)planet around the young (∼2 Myr) solar analog LkCa 15, located inside a known gap in the protoplanetary disk (a "transitional disk"). Our observations use non-redundant aperture masking interferometry at 3 epochs to reveal a faint and relatively blue point source (M K ′ = 9.1 ± 0.2, K ′ − L ′ = 0.98 ± 0.22), flanked by approximately coorbital emission that is red and resolved into at least two sources (We propose that the most likely geometry consists of a newly-formed (proto)planet that is surrounded by dusty material. The nominal estimated mass is ∼6 M Jup according to the 1 Myr hot-start models. However, we argue based on its luminosity, color, and the presence of circumplanetary material that the planet has likely been caught at its epoch of assembly, and hence this mass is an upper limit due to its extreme youth and flux contributed by accretion. The projected separations (71.9 ± 1.6 mas, 100.7 ± 1.9 mas, and 88.2 ± 1.8 mas) and deprojected orbital radii (16, 21, and 19 AU) correspond to the center of the disk gap, but are too close to the primary star for a circular orbit to account for the observed inner edge of the outer disk, so an alternate explanation (i.e., additional planets or an eccentric orbit) is likely required. This discovery is the first direct evidence that at least some transitional disks do indeed host newly-formed (or forming) exoplanetary systems, and the observed properties provide crucial insight into the gas giant formation process.
The dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of 382 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry (NRM) on the Keck-II telescope. Among the full sample of 506 candidate binary companions to KOIs, we super-resolve some binary systems to projected separations of <5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. For a field binary population, we should have found 58 binary companions with projected separation ρ < 50 AU and mass ratio q > 0.4; we instead only found 23 companions (a 4.6σ deficit), many of which must be wider pairs that are only close in projection. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin , we find with correlated uncertainties that inside a cut = 47 +59 −23 AU, the planet occurrence rate in binary systems is only S bin = 0.34 +0.14 −0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.
We present velocity-resolved spectro-astrometric imaging of the 4.7 µm rovibrational lines of CO gas in protoplanetary disks using the CRIRES high resolution infrared spectrometer on the Very Large Telescope (VLT). The method as applied to three disks with known dust gaps or inner holes out to 4-45 AU (SR 21, HD 135344B and TW Hya) achieves an unprecedented spatial resolution of 0.1 − 0.5 AU. While one possible gap formation mechanism is dynamical clearing by giant planets, other equally good explanations (stellar companions, grain growth, photo-evaporation) exist. One way of distinguishing between different scenarios is the presence and distribution of gas inside the dust gaps. Keplerian disk models are fit to the spectro-astrometric position-velocity curves to derive geometrical parameters of the molecular gas. We determine the position angles and inclinations of the inner disks with accuracies as good as 1-2 • , as well as the radial extent of the gas emission. Molecular gas is detected well inside the dust gaps in all three disks. The gas emission extends to within a radius of 0.5 AU for HD 135344B and to 0.1 AU for TW Hya, supporting partial clearing by a < 1 − 10 M Jup planetary body as the cause of the observed dust gaps, or removal of the dust by extensive grain coagulation and planetesimal formation. The molecular gas emission in SR 21 appears to be truncated within ∼ 7 AU, which may be caused by complete dynamical clearing by a more massive companion. We find a smaller inclination angle of the inner disk of TW Hya than that determined for the outer disk, suggestive of a disk warp. We also detect significant azimuthal asymmetries in the SR 21 and HD 135344B inner disks.
The GALAH survey is a large high-resolution spectroscopic survey using the newly commissioned HERMES spectrograph on the Anglo-Australian Telescope. The HER-MES spectrograph provides high-resolution (R ∼28,000) spectra in four passbands for 392 stars simultaneously over a 2 degree field of view. The goal of the survey is to unravel the formation and evolutionary history of the Milky Way, using fossil remnants of ancient star formation events which have been disrupted and are now dispersed throughout the Galaxy. Chemical tagging seeks to identify such dispersed remnants solely from their common and unique chemical signatures; these groups are unidentifiable from their spatial, photometric or kinematic properties. To carry out chemical tagging, the GALAH survey will acquire spectra for a million stars down to V ∼14. The HERMES spectra of FGK stars contain absorption lines from 29 elements including light proton-capture elements, α-elements, odd-Z elements, iron-peak elements and n-capture elements from the light and heavy s-process and the r-process. This paper describes the motivation and planned execution of the GALAH survey, and presents some results on the first-light performance of HERMES.
We present the results of a survey for stellar and substellar companions to 82 young stars in the nearby OB association Upper Scorpius. This survey used nonredundant aperture mask interferometry to achieve typical contrast limits of ÁK $ 5 Y6 at the diffraction limit, revealing 12 new binary companions that lay below the detection limits of traditional high-resolution imaging; we also summarize a complementary snapshot imaging survey that discovered seven directly resolved companions. The overall frequency of binary companions ($35 þ5 À4 % at separations of 6Y435 AU) appears to be equivalent to field stars of similar mass, but companions could be more common among lower mass stars than for the field. The companion mass function has statistically significant differences compared to several suggested mass functions for the field, and we suggest an alternate lognormal parameterization of the mass function. Our survey limits encompass the entire brown dwarf mass range, but we only detected a single companion that might be a brown dwarf; this deficit resembles the so-called brown dwarf desert that has been observed by radial velocity planet searches. Finally, our survey's deep detection limits extend into the top of the planetary mass function, reaching 8Y12 M Jup for half of our sample. We have not identified any planetary companions at high confidence (k99.5%), but we have identified four candidate companions at lower confidence (k97.5%) that merit additional follow-up to confirm or disprove their existence.
The mass-luminosity relation for late-type stars has long been a critical tool for estimating stellar masses. However, there is growing need for both a higher-precision relation and a better understanding of systematic effects (e.g., metallicity). Here we present an empirical relationship between M K S and M * spanning 0.075M < M * < 0.70M . The relation is derived from 62 nearby binaries, whose orbits we determine using a combination of Keck/NIRC2 imaging, archival adaptive optics data, and literature astrometry. From their orbital parameters, we determine the total mass of each system, with a precision better than 1% in the best cases. We use these total masses, in combination with resolved K S magnitudes and system parallaxes, to calibrate the M K S -M * relation. The resulting posteriors can be used to determine masses of single stars with a precision of 2-3%, which we confirm by testing the relation on stars with individual dynamical masses from the literature. The precision is limited by scatter around the best-fit relation beyond measured M * uncertainties, perhaps driven by intrinsic variation in the M K S -M * relation or underestimated uncertainties in the input parallaxes. We find that the effect of [Fe/H] on the M K S -M * relation is likely negligible for metallicities in the solar neighborhood (0.0±2.2% change in mass per dex change in [Fe/H]). This weak effect is consistent with predictions from the Dartmouth Stellar Evolution Database, but inconsistent with those from MESA Isochrones and Stellar Tracks (at 5σ). A sample of binaries with a wider range of abundances will be required to discern the importance of metallicity in extreme populations (e.g., in the Galactic halo or thick disk).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.