Background α-Linolenic acid (ALA) is a plant-derived omega-3 unsaturated fatty acid that is rich in flaxseed oil (FO). The effect of FO on bone health is controversial. This study aims to evaluate the effect of FO on bone damage induced by a high-fat diet (HFD) and to explore the possible mechanism. Methods Male Sprague-Dawley rats were fed a normal control diet (NC, 10% fat), FO diet (NY, 10% fat), HFD (60% fat), or HFD containing 10% FO (HY, 60% fat) for 22 weeks. Micro CT and three-point bending tests were conducted to evaluate bone microstructure and biomechanics. Serum was collected for the detection of ALP, P1NP, and CTX-1. Rat primary osteoblasts (OBs) were treated with different concentrations of ALA with or without palmitic acid (PA) treatment. The ALP activity, osteogenic-related gene and protein expression were measured. Results Rats in the HFD group displayed decreased biomechanical properties, such as maximum load, maximum fracture load, ultimate tensile strength, stiffness, energy absorption, and elastic modulus, compared with the NC group (p < 0.05). However, HY attenuated the HFD-induced decreases in bone biomechanical properties, including maximum load, maximum fracture load, and ultimate tensile strength (p < 0.05). Trabecular bone markers such as trabecular volume bone mineral density (Tb. vBMD), trabecular bone volume/total volume (Tb. BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th) were decreased, trabecular separation (Tb. Sp) and the structure model index (SMI) were increased in the HFD group compared with the NC group, and all parameters were remarkably improved in the HY group compared to the HFD group (p < 0.05). However, cortical bone markers such as cortical volume bone mineral density (Ct. vBMD), cortical bone volume/total volume (Ct. BV/TV) and cortical bone thickness (Ct. Th) were not significantly different among all groups. Moreover, the serum bone formation markers ALP and P1NP were higher and the bone resorption marker CTX-1 was lower in the HY group compared with levels in the HFD group. Compared with the NC group, the NY group had no difference in the above indicators. In rat primary OBs, PA treatment significantly decreased ALP activity and osteogenic gene and protein (β-catenin, RUNX2, and osterix) expression, and ALA dose-dependently restored the inhibition induced by PA. Conclusions FO might be a potential therapeutic agent for HFD-induced bone loss, most likely by promoting osteogenesis.
Background: Visceral adipose tissue-derived serine protease inhibitor (vaspin), an adipose-derived hormone, exhibits various biological functions. Recently, studies showed that vaspin is closely related to bone metabolism. However, how vaspin influences bone formation and its underlying mechanisms in high fat-induced obese rats and rat primary osteoblasts (OBs) are not fully understood. In this study, the effects of vaspin on bone mechanical parameters and microarchitecture were evaluated.Methods: A total of 40 male Sprague-Dawley (SD) rats at 5-week old were fed with high fat diet (HFD) and normal diet (ND) for 12 weeks followed by treatment of vaspin for 10 weeks. Micro CT and three-point bending tests were conducted to evaluate bone microstructure and biomechanics. The alkaline phosphatase (ALP) activity, expression of Runt-related transcription factor 2 (Runx2), Osterix (Osx), Collegen alpha1 (Colla1) procollagen I N-terminal peptide (PINP), C-telopeptide of type I collagen (CTX), Smad2/3 and p-Smad2/3 was detected by different methods. Results: Our data indicated that, compared with ND rats, HFD rats exhibited high body weight, decreased bone strength and deteriorative bone quality. In contrast, vaspin reduced the body weight, improved the whole body metabolic status, enhanced bone strength, trabecular bone mass, and expression of Runx2, Osx, PINP, and decreased the expression level of plasma CTX. In vitro studies showed that vaspin promoted osteogenic differentiation and ALP activity in rat primary OBs in a dose dependent manner. Vaspin also upregulated mRNA expression of osteogenesis-related genes Runx2, Osx and Colla1 and protein expression of Runx2, Smad2/3 and p-Smad2/3. Conclusions:Our results indicated that vaspin protects against HFD-induced bone loss, and promotes osteogenic differentiation by activating the Smad2/3-Runx2 signaling pathway.
Background As the incidence of secretory osteoporosis has increased, bone loss, osteoporosis and their relationships with thyroid-stimulating hormone (TSH) have received increased attention. In this study, the role of TSH in bone metabolism and its possible underlying mechanisms were investigated. Methods We analyzed the serum levels of free triiodothyronine (FT3), free thyroxine (FT4), and TSH and the bone mineral density (BMD) levels of 114 men with normal thyroid function. In addition, osteoblasts from rat calvarial samples were treated with different doses of TSH for different lengths of time. The related gene and protein expression levels were investigated. Results A comparison of the BMD between the high-level and low-level serum TSH groups showed that the TSH serum concentration was positively correlated with BMD. TSH at concentrations of 10 mU/mL and 100 mU/mL significantly increased the mRNA levels of ALP, COI1 and Runx2 compared with those of the control (P < 0.05, P < 0.01). Bone morphogenetic protein (BMP)2 activity was enhanced with both increased TSH concentration and increased time. The protein levels of Runx2 and osterix were increased in a dose-dependent manner. Conclusions The circulating concentrations of TSH and BMD were positively correlated with normal thyroid function in males. TSH promoted osteoblast proliferation and differentiation in rat primary osteoblasts.
Previous studies have found follicle‐stimulating hormone (FSH) receptors on chondrocytes (cartilage cells), but the mechanism of FSH action on chondrocytes is not clear. The purpose of this experiment is to study whether FSH affects chondrocytes and how it causes changes in these cells. Our results show that osteoarthritis became worse after FSH injection in the knee joint of mice. After the stimulation of chondrocytes by FSH, a total of 664 up‐regulated genes, such as Col12a1 and Col1a1 , and 644 down‐regulated genes, such as MGP , were screened by transcriptomics. A subset of extracellular matrix (ECM)‐related genes and pathways underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and the downregulation of MGP , the upregulation of EGR1 and Col1a1 , and the increase of IL‐6 were verified. It was also observed that FSH can inhibit the cAMP/PKA and MKK4/JNK signaling pathway. In conclusion, we demonstrated that FSH can increase cartilage inflammatory response and promote chondrocyte dedifferentiation by inhibiting the cAMP/PKA and MKK4/JNK signaling pathways.
Previous studies suggest that postmenopausal osteoarthritis is linked to a decrease in estrogen levels. However, whether follicle-stimulating hormone (FSH), the upstream hormone of estrogen, affects cartilage destruction and thus contributes to the onset of osteoarthritis has never been explored. To evaluate the potential involvement of FSH in joint degeneration and to identify the molecular mechanisms through which FSH influences chondrocytes, mouse cartilage chondrocytes and the ATDC5 chondrocyte cell line were treated with FSH and inhibitors of intracellular signaling pathways. We observed that FSH induces chondrocyte dedifferentiation by decreasing type II collagen (Coll-II) synthesis. Chondrocyte cytoskeleton reorganization was also observed after FSH treatment. The FSH-induced decrease in Coll-II was rescued by ERK-1/2 inhibition but aggravated by p38 inhibition. In addition, knocking down the FSH receptor (Fshr) by using Fshr siRNA abolished chondrocyte dedifferentiation, as indicated by the increased expression of Coll-II. Inhibition of the protein Gαi by pertussis toxin (PTX) also restored FSH-inhibited Coll-II, suggesting that Gαi is downstream of FSHR in chondrocyte dedifferentiation. FSHβ antibody blockade prevented cartilage destruction and cell loss in mice. Moreover, decreased Coll-II staining due to the progression of aging could be rescued by blocking FSH. Thus, we suggest that high circulating FSH, independent of estrogen, is an important regulator in chondrocyte dedifferentiation and cartilage destruction.
Knee osteoarthritis (KOA) is prevalent in postmenopausal women and a cause of pain and disability in elderly populations. Here, we report high follicle‐stimulating hormone (FSH) levels across postmenopausal female KOA patients aged 50–60 years. We speculate FSH might damage cartilage tissues through the phosphoinositide 3‐kinase/AKT/nuclear factor kappa B pathway. Our findings suggest that FSH modulation holds promise as a novel treatment for postmenopausal female KOA patients aged 50–60 years.
Background Obesity has a negative impact on bone health; thus far, no specific pharmacotherapy has been approved. Berberine has shown improvements in osteoporosis in some animal models. However, it remains unknown whether berberine ameliorates obesity-induced bone damage. This study aims to evaluate the effect of berberine on bone damage in high-fat diet (HFD)-induced obese rats. Methods Male Sprague-Dawley rats were randomly assigned to a normal control diet (ND) group or HFD group. After the HFD induced obesity, the models were successfully established. Then, these rats were randomly divided into the HFD + berberine (HB) group or HFD group and were intraperitoneally administered berberine or an equivalent volume of DMSO, respectively, once a day for another 10 weeks. Micro-CT and three-point bending tests were conducted to evaluate bone microstructure and biomechanics. Serum was collected for the detection of P1NP, CTX-1, calcium (Ca) and phosphorus (P), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). HE staining was performed to observe the number of trabecular and bone marrow adipocytes. Results HFD-induced obese rats displayed decreased biomechanical properties, such as maximum load, maximum fracture load, ultimate tensile strength, stiffness, and energy absorption, compared with the ND rats (p<0.05). However, berberine attenuated bone damage, including maximum load, maximum fracture load, and stiffness, in the HB group compared with the HFD group (p<0.05). Trabecular bone markers were decreased in the HFD group compared with the ND group (p<0.05). All parameters were improved, as shown by micro-CT and HE staining, in the HB group compared to the HFD group. Cortical bone markers were not significantly different among all groups. Moreover, CTX-1, TNF-α, IL-1β and the number of adipocytes in bone marrow were significantly increased in HFD-induced obese rats. After treatment with berberine, TNF-α, IL-1β and the number of adipocytes in bone marrow were significantly decreased, and P1NP levels were higher in the HB group than in the HFD group. Conclusions Berberine might be a potential therapeutic agent for treating bone damage in HFD-induced obese rats by inhibiting inflammatory factors, reducing bone marrow adiposity and improving bone formation.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers