Objectives
Synthesizing and characterization of gold nanoparticles (Au NPs) by Ferula persica gum essential oil and investigating in vitro anti-cancer effects.
Methods
Characterization of NPs was performed. Cytotoxicity and apoptosis were determined on cancerous CT26 and non-cancerous Vero cells using MTT assay and acridine orange/ethidium bromide (AO/EB) staining, respectively. Clonogenic assay was also performed.
Key findings
The absorption peak in UV-visible spectroscopy was at 530 nm. In TEM image, Au NPs were spherical in shape with average size of 37.05 nm (78.6 nm in DLS analysis). Comparison of the FTIR spectrum of the Au NPs with the essential oil revealed the presence of compounds responsible for reducing and capping the gold ions. XRD pattern showed metal crystal structure. Au NPs exerted dose-dependent cytotoxicity with IC50 values of 0.0024 and 0.0307 mg/ml against CT26 and Vero cell lines, respectively. Au NPs induced apoptosis on both cell lines with statistically more intense effect on CT26 cells (P < 0.0001). Colony formation of CT26 and Vero cells was also inhibited in comparison to untreated cells (P < 0.05).
Conclusions
Ferula persica gum can be successfully used for green production of Au NPs. Au NPs show in vitro anti-cancer activity including cytotoxic, apoptotic and antiproliferative effects.
Background:GABA can influence the steroidogenesis in peripheral and central nervoussystems.Objectives:The present study investigates the interactive effect of GABAA receptors and extremely low frequency electromagnetic field on serum testosterone level of male rats.Patients and Methods:Fifty adult male rats were randomly assigned into 10 groups. Groups 2, 4, 6, 8, and 10 were exposed to ELF-EMF for 30 days 8hrs per day; while, the remaining groups (1, 3, 5, 7, and 9) were sham exposed animals. At the end of the experiment, animals in groups 1 and 2 received normal saline; while, animals in groups 3 and 4 were treated with 1 mg/kg of bicuculline methiodide, and for animals of groups 5 and 6,3 mg/kg of bicuculline was injected. Animals of groups 7 and 8 were treated with 0.5 mg/kg of muscimol hydrobromide and rats in groups 9 and 10 received 2 mg/kg muscimol hydrobromide. About forty minutes after the injection, blood samples were collected and serum testosterone level was assayed using RIA.Results:Administration of muscimol hydrobromide at both doses to sham exposed rats significantly decreased serum testosterone level as compared to sham exposed animals which received saline. Administration of bicuculline methiodide without exposure to ELF-EMF, had no significant effect on testosterone level as compared to group 1. Serum testosterone levels of rats in different groups, exposed to ELF-EMF were statistically the same. Moreover, serum testosterone of exposed and sham exposed rats in each treatment showed no significant difference.Conclusions:No interactivity is present in modulatory effects of GABAA receptors and ELF-EMFs on serum testosterone of male rats.
Mesenchymal stem cells (MSCs) can modulate dendritic cells (DCs) activation and induce tolerogenic characteristics in DCs. All mechanisms involved in MSCs-induced tolerogenic DCs are not fully understood. MicroRNAs (miRs) play important role in maturation and function of DCs. In this study, we investigated the effects of MSCs culture supernatant (C.S.) on expression of miR-155 and miR-23b in mice DCs. BALB/c mice spleens were used for DCs isolation. MSCs were isolated from the mice bone marrow and cultured in DMEM media. When MSCs expanded to sixth passage, C.S. was collected after 12, 24 and 48 h. Quantitative polymerase chain reaction (QPCR) was used to determine the expression of miR-155 and miR-23b in DCs treated with C.S. after 6 and 12 h. Secretion of IL-23 and TGF- β were detected in DCs treated with C.S. by ELISA after 24 h. miR-23b expression was significantly increased in DCs treated with 12 h C.S. for 12 h compared to negative controls. miR-155 expression did not change in DCs treated with C.S. after 6 and 12 h. miR-23b expression was significantly increased in DCs treated with 12 h C.S. for 12 h, compared to those treated with C.S. for 6 h. Similarly, miR-23b expression was increased in DCs treated with 24 h C.S. for 12 h when compared to those treated for 6 h. Production of TGF-β and IL-23 were not influenced by C.S. In conclusion, miR-23b is considered to be one of the mechanisms involved in tolerogenic DCs induction by C.S. in a time-dependent manner.
BackgroundThe emergence of antibacterial resistance against several classes of antibiotics is an inevitable consequence of drug overuse. As antimicrobial resistance spreads throughout the globe, new substances will always be necessary to fight against multidrug-resistant microorganisms. Venoms of many animals have recently gained attention in the search for new antimicrobials to treat infectious diseases. Thefore, the present study aimed to study the antibacterial effects of wasp (Vespa orientalis) crude venom.Two gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two gram-negative ones (Escherichia coli and Klesiella pneumonia) were compared for their sensitivity to the venom by determining the inhibition zone (Kirby-Bauer method) and minimum inhibitory concentration (MIC). A microbroth kinetic system based on continuous monitoring of changes in the optical density of bacterial growth was also used for determination of antimicrobial activity.ResultsThe venom exhibited a well-recognized antimicrobial property against the tested bacterial strains. The inhibition zones were determined to be 12.6, 22.7, 22.4 and 10.2 mm for S. aureus, B. subtilis, E. coli and K. pneumonia, respectively. The corresponding MIC values were determined to be 64, 8, 64 and 128 μg/mL, respectively. The MIC50 and MIC90 values of the venom were respectively determined to be 63.6 and 107 μg/mL for S. aureus, 4.3 and 7.0 μg/mL for B. subtilis, 45.3 and 65.7 μg/mL for E. coli and 74.4 and 119.2 μg/mL for K. pneumonia. Gram-positive bacteria were generally more sensitive to the venom than gram-negative ones.ConclusionsResults revealed that the venom markedly inhibits the growth of both gram-positive and gram-negative bacteria and could be considered a potential source for developing new antibacterial drugs.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.