Rivers and streams are heterogenous ecosystems that host a great number of vascular plant communities. The territory of Slovenia is highly diverse regarding geomorphologic, geologic, climatic, and edaphic conditions. We presumed that environmental variability will also affect the distribution of hygrophilous vascular plants in running waters and consequently the structure of plant communities they form. We analyzed macrophyte, spatial, and environmental parameters in 906 stretches of the watercourses occurring in the Dinaric, Pannonian, and Po lowland hydro-ecoregions. We determined 87 vascular plant taxa. The most abundant were Myriophyllum spicatum, Phalaris arundinacea, and Potamogeton nodosus. Submerged macrophytes presented about one third of total species abundance, while amphiphytes were somewhat less abundant. Canonical correspondence analysis (CCA) revealed that distance from the source explained 15.1% of the growth form type variability, and current velocity and latitude explained 4.1% each. With the assessed parameters, we explained 31.6% of the variability. When CCA was run with taxa, only 20.9% of their variability was explained with statistically significant parameters. We distinguished 25 different plant associations belonging to five classes and nine alliances. The majority of defined plant communities were distributed in different watercourses belonging to different hydro-ecoregions. Only seven communities had a narrower distribution range, three of them on karst poljes. Among them, the new association Mentho aquaticae-Oenanthetum fistulosae from the river Mali Obrh on the Loško polje was described in this contribution.
The Danube is the second-longest river in Europe that is subjected to various man-made alterations, including those related to hydro-power plants. We surveyed and analyzed the presence and abundance of macrophytes in the main channel from 2582 river kilometers (rkm) to 171 rkm. We also assessed selected habitat parameters in the sampled river stretches. Sixty-eight different plant species were recorded along the entire course. Among neophytes, we found Elodea nuttallii, E. canadensis, Vallisneriaspiralis and Azolla filiculoides. Based on similarity analysis, we distinguished 15 plant communities, most of which were defined as associations, which were classified into 5 alliances and represented three vegetation classes, namely vegetation of rooted hydrophytes Potamogetonetea, the vegetation of pleustophytes Lemnetea and vegetation of marshes Phragmitetea. The number and abundance of plant species, as well as plant communities recorded in single stretches, varied along the course. Canonical correspondence analysis (CCA) revealed that environmental parameters explained 21% of plant species composition. CCA runs with neophytes explained 41% of the variance, and current velocity, water transparency, species number and bank structure were significant variables. The present study revealed that the free-running sections of the river are poor in number and abundance of plant species, whereas impounded reaches mainly show an opposite result.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers