OBJECTIVEFulminant type 1 diabetes is characterized by the rapid onset of severe hyperglycemia and ketoacidosis, with subsequent poor prognosis of diabetes complications. Causative mechanisms for accelerated β-cell failure are unclear.RESEARCH DESIGN AND METHODSSubjects comprised three autopsied patients who died from diabetic ketoacidosis within 2–5 days after onset of fulminant type 1 diabetes. We examined islet cell status, including the presence of enterovirus and chemokine/cytokine/major histocompatibility complex (MHC) expressions in the pancreata using immunohistochemical analyses and RT-PCR.RESULTSImmunohistochemical analysis revealed the presence of enterovirus-capsid protein in all three affected pancreata. Extensive infiltration of CXCR3 receptor–bearing T-cells and macrophages into islets was observed. Dendritic cells were stained in and around the islets. Specifically, interferon-γ and CXC chemokine ligand 10 (CXCL10) were strongly coexpressed in all subtypes of islet cells, including β-cells and α-cells. No CXCL10 was expressed in exocrine pancreas. Serum levels of CXCL10 were increased. Expression of MHC class II and hyperexpression of MHC class I was observed in some islet cells.CONCLUSIONSThese results strongly suggest the presence of a circuit for the destruction of β-cells in fulminant type 1 diabetes. Enterovirus infection of the pancreas initiates coexpression of interferon-γ and CXCL10 in β-cells. CXCL10 secreted from β-cells activates and attracts autoreactive T-cells and macrophages to the islets via CXCR3. These infiltrating autoreactive T-cells and macrophages release inflammatory cytokines including interferon-γ in the islets, not only damaging β-cells but also accelerating CXCL10 generation in residual β-cells and thus further activating cell-mediated autoimmunity until all β-cells have been destroyed.
Plexiform angiomyxoid myofibroblastic tumor of the stomach is a unique mesenchymal tumor that we first described in 2007. The tumor is very rare, and to date, only 18 cases confirmed by immunohistochemistry have been reported in the literature. The patients' ages ranged from 7 to 75 years (mean, 43 years), and the male-to-female ratio was approximately 1:1. Representative clinical symptoms are ulceration, associated upper gastrointestinal bleeding (hematemesis), and anemia. The tumors are located at the antrum in all cases, and grossly, the tumor is whitish to brownish or reddish, and forms a lobulated submucosal or transmural mass. Microscopically, the tumor is characterized by a plexiform growth pattern, the proliferation of cytologically bland spindle cells, and a myxoid stroma that is rich in small vessels and positive for Alcian blue stain. Immunohistochemically, the tumor cells are positive for alpha-smooth muscle actin and negative for KIT and CD34. Differential diagnoses include gastrointestinal stromal tumor and other mesenchymal tumors of the gastrointestinal tract. Some authors proposed that this tumor should be designated as "plexiform fibromyxoma", but this designation might cause confusion. The tumor is probably benign and thus far, neither recurrence nor metastasis has been reported.
OBJECTIVEThe contribution of innate immunity responsible for aggressive β-cell destruction in human fulminant type 1 diabetes is unclear.RESEARCH DESIGN AND METHODSIslet cell expression of Toll-like receptors (TLRs), cytoplasmic retinoic acid–inducible gene I (RIG-I)-like receptors, downstream innate immune markers, adaptive immune mediators, and apoptotic markers was studied in three autopsied pancreata obtained 2 to 5 days after onset of fulminant type 1 diabetes.RESULTSRIG-I was strongly expressed in β-cells in all three pancreata infected with enterovirus. Melanoma differentiation–associated gene-5 was hyperexpressed in islet cells, including β- and α-cells. TLR3 and TLR4 were expressed in mononuclear cells that infiltrated islets. Interferon (IFN)-α and IFN-β were strongly expressed in islet cells. Major histocompatibility complex (MHC)-class I, IFN-γ, interleukin-18, and CXC motif ligand 10 were expressed and colocalized in affected islets. CD11c+ MHC-class II+ dendritic cells and macrophage subsets infiltrated most islets and showed remarkable features of phagocytosis of islet cell debris. CD4+ forkhead box P3+ regulatory T cells were not observed in and around the affected islets. Mononuclear cells expressed the Fas ligand and infiltrated most Fas-expressing islets. Retinoic acid–receptor responder 3 and activated caspases 8, 9, and 3 were preferentially expressed in β-cells. Serum levels of IFN-γ were markedly increased in patients with fulminant type 1 diabetes.CONCLUSIONSThese findings demonstrate the presence of specific innate immune responses to enterovirus infection connected with enhanced adoptive immune pathways responsible for aggressive β-cell toxicity in fulminant type 1 diabetes.
The time-to-maximum of the tissue residue function (T max ) perfusion index has proven very predictive of infarct growth in large clinical trials, yet its dependency on simple tracer delays remains unknown. Here, we determine the dependency of computed tomography (CT) perfusion (CTP) T max estimates on tracer delay using a range of deconvolution techniques and digital phantoms. Digital phantom data sets simulating the tracer delay were created from CTP data of six healthy individuals, in which time frames of the left cerebral hemisphere were shifted forward and backward by up to ± 5 seconds. These phantoms were postprocessed with three common singular value decomposition (SVD) deconvolution algorithms-standard SVD (sSVD), block-circulant SVD (bSVD), and delay-corrected SVD (dSVD)-with an arterial input function (AIF) obtained from the right middle cerebral artery (MCA). The T max values of the left hemisphere were compared among different tracer delays and algorithms by a region of interest-based analysis. The T max values by sSVD were positively correlated with 'positive shifts' but unchanged with 'negative shifts,' those by bSVD had an excellent positive linear correlation with both positive and negative shifts, and those by dSVD were relatively constant, although slightly increased with the positive shifts. The T max is a parameter highly dependent on tracer delays and deconvolution algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.