A note on versions:The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.For more information, please contact eprints@nottingham.ac.uk
Inquiry-based science teaching involves supporting pupils to acquire scientific knowledge indirectly by conducting their own scientific experiments, rather than receiving scientific knowledge directly from teachers. This approach to instruction is widely used among science educators in many countries. However, researchers and policymakers have recently called the effectiveness of inquiry approaches into doubt. Using nationally-representative, linked survey and administrative data, we find little evidence that the frequency of inquiry-based instruction is positively associated with teenagers' performance in science examinations. This finding is robust to the use of different measures of inquiry, different examinations/measures of attainment, across classrooms with varying levels of disciplinary standards and across gender and prior attainment subgroups.
This review examines how natural history museums (NHMs) can enhance learning and engagement in science, particularly for school-age students. First, we describe the learning potential of informal science learning institutions in general, then we focus on NHMs. We review the possible benefits of interactions between schools and NHMs, and the potential for NHMs to teach about challenging issues such as evolution and climate change and to use digital technologies to augment more traditional artefacts. We conclude that NHMs can provide students with new knowledge and perspectives, with impacts that can last for years. Through visits and their on-line presence, NHMs can help students see science in ways that the school classroom rarely can, with opportunities to meet scientists, explore whole topic exhibitions, engage with interactive displays and employ digital technologies both in situ and to support learning in the school science classroom. Although these interactions have the potential to foster positive cognitive, affective and social outcomes for students, there is a lack of reliable measures of the impact of NHM experiences for students. Opportunities to foster relationships between NHM staff and teachers through professional development can help articulate shared goals to support students’ learning and engagement.
This study is a comparative analysis of 15-year-old students' scientific literacy, and its association with the instructional strategies that students experience, across six OECD countries that participated in PISA 2015. Across the six countries, the study investigates the efficacy of inquiry-based instruction in science in contrast with two other instructional approaches to teaching secondary science: adaptive and teacher-directed teaching. The analysis shows that students who reported experiencing high frequencies of inquiry strategies in their classrooms consistently evidenced lower levels of scientific literacy across the six countries. Benchmark analysis also showed, common to all six countries, a strongly positive association between the frequency of teacher-directed and adaptive teaching strategies and students' scientific literacy. Additionally, the study disaggregates PISA's composite variable representing inquiry-based instruction and shows that different components of inquiry are differentially associated with students' scientific literacy. We discuss the implications of these analyses for science teacher educators, science teachers, and educational policy makers. In doing so, we add nuance to our understanding of the efficacy of inquiry-based instruction in science, suggesting that some components, as conceptualised and assessed in PISA, seem to suggest greater attention and use, and others more moderated use.
Set in the context of today's globalized approaches to curriculum reform, the purpose of this study was to compare the teaching and learning of science in Chinese and Australian Grade 6 classrooms. A conceptual framework based on notions of culture and socioeconomic status informed the research design. Case study participants were three teachers of science and 140 students from three elementary schools of high, medium, and low socioeconomic status in Hunan Province, China; and three teachers and 105 students from paired schools in Western Australia. The formal curriculum, the curriculum-in-action, and the experiential curriculum in all case studies in each country were examined. Both qualitative and quantitative data were collected with student questionnaires,
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.