A finite element model for the process of a wheel passing a crossing is presented. In the dynamic model, one wheel, the wing rails and the crossing nose (frog) are modelled. The bogie, the complete wheel set and the support of the crossing are represented as a system consisting of masses, springs, dampers and friction-generating elements. The rolling/sliding behaviour between the wheel and crossing is studied using the proposed model. Due to the conical shape of the wheel tread and multiple contacts between the wheel and the crossing parts, sliding occurs during the transition of the wheel from the wing rail to the crossing nose or vice versa. At the same time, an impact occurs that produces high contact forces. The parameters of the model are the train speed and passing direction, the wheel and the crossing geometry, the axle load and the support of the crossing. In this paper, the crossover process is studied for high axle loads and compared with results of simulations using a normal axle load. Further parameters are three train velocities, both directions of passing and different crossing materials. The loading of the crossing nose is calculated for all cases (axle load, train speed and direction) and materials.
The contact condition between the wheel and the rail is paramount to the lifespan, safety, and smooth operation of any rail network. The wheel/rail contact condition has been estimated, calculated, and simulated successfully for years, but accurate dynamic measurement has still not been achieved. Methods using pressure-sensitive films and controlled air flow have been employed, but both are limited. The work described in this paper has enabled, for the first time, the measurement of a dynamic wheel/rail contact patch using an array of 64 ultrasonic elements mounted in the rail. Previous work has successfully proved the effectiveness of ultrasonic reflectometry for static wheel/rail contact determination. The dynamic real-time measurement is based on previous work, but now each element of an array is individually pulsed in sequence to build up a linear measurement of the interface. These cross-sectional, line measurements are then processed and collated resulting in a two-dimensional contact patch. This approach is able to provide not only a contact patch, but more importantly, a detailed and relatively high-resolution pressure distribution plot of the contact. Predictions using finite element methods (FEM) have also been carried out for validation. Work is now underway to increase the speed of the measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.