The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore flagellum, leading to the diversification of terrestrial fungi. Here we develop phylogenetic hypotheses for Fungi using data from six gene regions and nearly 200 species. Our results indicate that there may have been at least four independent losses of the flagellum in the kingdom Fungi. These losses of swimming spores coincided with the evolution of new mechanisms of spore dispersal, such as aerial dispersal in mycelial groups and polar tube eversion in the microsporidia (unicellular forms that lack mitochondria). The enigmatic microsporidia seem to be derived from an endoparasitic chytrid ancestor similar to Rozella allomycis, on the earliest diverging branch of the fungal phylogenetic tree.
The most dramatic shifts in the classification relative to previous works concern the groups that have traditionally been included in the Chytridiomycota and Zygomycota. The Chytridiomycota is retained in a restricted sense, with Blastocladiomycota and Neocallimastigomycota representing segregate phyla of flagellated Fungi. Taxa traditionally placed in Zygomycota are distributed among Glomeromycota and several subphyla incertae sedis, including Mucoromycotina, Entomophthoromycotina, Kickxellomycotina, and Zoopagomycotina. Microsporidia are included in the Fungi, but no further subdivision of the group is proposed. Several genera of 'basal' Fungi of uncertain position are not placed in any higher taxa, including Basidiobolus, Caulochytrium, Olpidium, and Rozella.
This revision of the classification of eukaryotes follows that of Adl et al., 2012 [ J. Euk. Microbiol . 59(5)] and retains an emphasis on protists. Changes since have improved the resolution of many nodes in phylogenetic analyses. For some clades even families are being clearly resolved. As we had predicted, environmental sampling in the intervening years has massively increased the genetic information at hand. Consequently, we have discovered novel clades, exciting new genera and uncovered a massive species level diversity beyond the morphological species descriptions. Several clades known from environmental samples only have now found their home. Sampling soils, deeper marine waters and the deep sea will continue to fill us with surprises. The main changes in this revision are the confirmation that eukaryotes form at least two domains, the loss of monophyly in the Excavata, robust support for the Haptista and Cryptista. We provide suggested primer sets for DNA sequences from environmental samples that are effective for each clade. We have provided a guide to trophic functional guilds in an appendix, to facilitate the interpretation of environmental samples, and a standardized taxonomic guide for East Asian users.
Chytridiomycota (chytrids) is the only phylum of true Fungi that reproduces with motile spores (zoospores). Chytrids currently are classified into five orders based on habitat, zoospore characters and life cycles. In this paper we estimate the phylogeny of the chytrids with DNA sequences from the ribosomal RNA operon (18S+5.8S+28S subunits). To our surprise the morphologically reduced parasites Olpidium and Rozella comprise two entirely new, and separate, lineages on the fungal tree. Olpidium brassicae groups among the Zygomycota, and Rozella spp. are the earliest branch to diverge in the fungal kingdom. The phylogeny also suggests that Chytridiomycota is not monophyletic and there are four major lineages of chytrids: Rozella spp., Olpidium brassicae, the Blastocladiales and a "core chytrid clade" containing the remaining orders and families and the majority of flagellated fungi. Within the core chytrid group 11 subclades can be identified, each of which correlates well with zoospore ultrastructure or morphology. We provide a synopsis of each clade and its morphological circumscription. The Blastocladiales appears to be the sister taxon of most nonflagellated fungi. Based on molecular phylogenetic and ultrastructural characters this order is elevated to a phylum, the Blastocladiomycota.
DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.Database URL: http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353
Mass culture of algae for the production of biofuels is a developing technology designed to offset the depletion of fossil fuel reserves. However, large scale culture of algae in open ponds can be challenging because of incidences of infestation with algal parasites. Without knowledge of the identity of the specific parasite and how to control these pests, algal-based biofuel production will be limited. We have characterized a eukaryotic parasite of Scenedesmus dimorphus growing in outdoor ponds used for biofuel production. We demonstrated that as the genomic DNA of parasite FD01 increases, the concentration of S. dimorphus cells decreases; consequently, this is a highly destructive pathogen. Techniques for culture of the parasite and host were developed, and the endoparasite was identified as the Aphelidea, Amoeboaphelidium protococcarum. Phylogenetic analysis of ribosomal sequences revealed that parasite FD01 placed within the recently described Cryptomycota, a poorly known phylum based on two species of Rozella and environmental samples. Transmission electron microscopy demonstrated that aplanospores of the parasite produced filose pseudopodia, which contained fine fibers the diameter of actin microfilaments. Multiple lipid globules clustered and were associated with microbodies, mitochondria and a membrane cisternae, an arrangement characteristic of the microbody-lipid globule complex of chytrid zoospores. After encystment and attachment to the host cells, the parasite injected its protoplast into the host between the host cell wall and plasma membrane. At maturity the unwalled parasite occupied the entire host cell. After cleavage of the protoplast into aplanospores, a vacuole and lipids remained in the host cell. Amoeboaphelidium protococcarum isolate FD01 is characteristic of the original description of this species and is different from strain X-5 recently characterized. Our results help put a face on the Cryptomycota, revealing that the phylum is more diverse than previously understood and include some of the Aphelidea as well as Rozella species and potentially Microsporidia.
Chytridiomycota (chytrids) is the only phylum of true Fungi that reproduces with motile spores (zoospores). Chytrids currently are classified into five orders based on habitat, zoospore characters and life cycles. In this paper we estimate the phylogeny of the chytrids with DNA sequences from the ribosomal RNA operon (18S+5.8S+28S subunits). To our surprise the morphologically reduced parasites Olpidium and Rozella comprise two entirely new, and separate, lineages on the fungal tree. Olpidium brassicae groups among the Zygomycota, and Rozella spp. are the earliest branch to diverge in the fungal kingdom. The phylogeny also suggests that Chytridiomycota is not monophyletic and there are four major lineages of chytrids: Rozella spp., Olpidium brassicae, the Blastocladiales and a "core chytrid clade" containing the remaining orders and families and the majority of flagellated fungi. Within the core chytrid group 11 subclades can be identified, each of which correlates well with zoospore ultrastructure or morphology. We provide a synopsis of each clade and its morphological circumscription. The Blastocladiales appears to be the sister taxon of most nonflagellated fungi. Based on molecular phylogenetic and ultrastructural characters this order is elevated to a phylum, the Blastocladiomycota.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.