Steroid profiling is one of the most versatile and informative screening tools for the detection of steroid abuse in sports drug testing. Concentrations and ratios of various endogenously produced steroidal hormones, their precursors and metabolites including testosterone (T), epitestosterone (E), dihydrotestosterone (DHT), androsterone (And), etiocholanolone (Etio), dehydroepiandrosterone (DHEA), 5a-androstane-3a,17b-diol (Adiol), and 5b-androstane-3a,17b-diol (Bdiol) as well as androstenedione, 6a-OH-androstenedione, 5b-androstane-3a,17a-diol (17-epi-Bdiol), 5a-androstane-3a,17a-diol (17-epi-Adiol), 3a,5-cyclo-5a-androstan-6ß-ol-17-one (3a,5-cyclo), 5a-androstanedione (Adion), and 5b-androstanedione (Bdion) add up to a steroid profile that is highly sensitive to applications of endogenous as well as synthetic anabolic steroids, masking agents, and bacterial activity. Hence, the knowledge of factors that do influence the steroid profile pattern is a central aspect, and pharmaceutical (application of endogenous steroids and various pharmaceutical preparations), technical (hydrolysis, derivatization, matrix), and biological (bacterial activities, enzyme side activities) issues are reviewed.
Since 1999 several groups have analyzed nutritional supplements with mass spectrometric methods (GC/MS, LC/MS/MS) for contaminations and adulterations with doping substances.These investigations showed that nutritional supplements contained prohibited stimulants as ephedrines, caffeine, methylenedioxymetamphetamie and sibutramine, which were not declared on the labels. An international study performed in 2001 and 2002 on 634 nutritional supplements that were purchased in 13 different countries showed that about 15% of the nonhormonal nutritional supplements were contaminated with anabolic-androgenic steroids (mainly prohormones). Since 2002, also products intentionally faked with high amounts of 'classic' anabolic steroids such as metandienone, stanozolol, boldenone, dehydrochloromethyl-testosterone, oxandrolone etc. have been detected on the nutritional supplement market. These anabolic steroids were not declared on the labels either. The sources of these anabolic steroids are probably Chinese pharmaceutical companies, which sell bulk material of anabolic steroids. In 2005 vitamin C, multivitamin and magnesium tablets were confiscated, which contained crosscontaminations of stanozolol and metandienone. Since 2002 new 'designer' steroids such as prostanozol, methasterone, androstatrienedione etc. have been offered on the nutritional supplement market. In the near future also cross-contaminations with these steroids are expected. Recently a nutritional supplement for weight loss was found to contain the b2-agonist clenbuterol. The application of such nutritional supplements is connected with a high risk of inadvertent doping cases and a health risk. For the detection of new 'designer' steroids in nutritional supplements, mass spectrometric strategies (GC/MS, LC/MS/MS) are presented.
Anabolic-androgenic steroids are some of the most frequently detected drugs in amateur and professional sports. Doping control laboratories have developed numerous assays enabling the determination of administered drugs and/or their metabolic products that allow retrospectives with respect to pharmacokinetics and excretion profiles of steroids and their metabolites. A new metabolite generated from metandienone has been identified as 18-nor-17beta-hydroxymethyl,17alpha-methyl-androst-1,4,13-trien-3-one in excretion study urine samples providing a valuable tool for the long-term detection of metandienone abuse by athletes in sports drug testing. The metabolite was characterized using gas chromatography/(tandem) mass spectrometry, liquid chromatography/tandem mass spectrometry and liquid chromatography/high-resolution/high-accuracy (tandem) mass spectrometry by characteristic fragmentation patterns representing the intact 3-keto-1,4-diene structure in combination with typical product ions substantiating the proposed C/D-ring structure of the steroid metabolite. In addition, structure confirmation was obtained by the analysis of excretion study urine specimens obtained after administration of 17-CD(3)-labeled metandienone providing the deuterated analogue to the newly identified metabolite. 18-Nor-17beta-hydroxymethyl,17alpha-methyl-androst-1,4,13-trien-3-one was determined in metandienone administration study urine specimens up to 19 days after application of a single dose of 5 mg, hence providing an extended detection period compared with commonly employed strategies.
The application of a comprehensive gas chromatography/combustion/isotope ratio mass spectrometry-based method for the measurement of stable carbon isotopes of endogenous urinary steroids excreted as sulphates is presented. The key element in sample preparation is the consecutive cleanup with high-performance liquid chromatography of underivatized and acetylated steroids, which allows the isolation of seven analytes (pregn-5-ene-3β,17α,20α-triol, etiocholanolone, androsterone, epiandrosterone, dehydroepiandrosterone (DHEA), androst-5-ene-3β,17β-diol and androst-5-ene-3β,17α-diol) from a single urine specimen. These steroids are of particular importance to doping controls as they should enable the sensitive and retrospective detection of DHEA abuse by athletes.Depending on the biological background, the determination limit for all steroids ranges from 5 to 10 ng/mL for a 10 mL specimen. The method is validated by means of linear mixing models for each steroid, which covers the items, repeatability and reproducibility. The specificity was further demonstrated by gas chromatography/mass spectrometry for each analyte, and no influence of the sample preparation or the quantity of analyte on carbon isotope ratios was observed. In order to determine naturally occurring (13)C/(12)C ratios and urinary concentrations of all implemented steroids, a reference population of n = 67 subjects was measured to enable the calculation of reference limits for all relevant steroidal Δ values.The applicability of the developed method was tested by means of a DHEA excretion study. Despite the fact that orally ingested DHEA is preferentially converted into sulphated metabolites and that the renal clearance of sulphated steroids is slow, only the (13)C/(12)C ratio of EpiA demonstrated the potential to prolong the detection time for DHEA misuse.
According to the World Anti-Doping Agency (WADA) Prohibited List, anabolic agents consist of exogenous anabolic androgenic steroids (AAS), endogenous AAS and other anabolic agents such as clenbuterol and selective androgen receptor modulators (SARMs). Currently employed strategies for their improved detection include the prolongation of the detection windows for exogenous AAS, non-targeted and indirect analytical approaches for the detection of modified steroids (designer steroids), the athlete’s biological passport and isotope ratio mass spectrometry for the detection of the misuse of endogenous AAS, as well as preventive doping research for the detection of SARMs. The recent use of these strategies led to 4–80-fold increases of adverse analytical findings for exogenous AAS, to the detection of the misuse of new designer steroids, to adverse analytical findings of different endogenous AAS and to the first adverse analytical findings of SARMs. The strategies of the antidoping research are not only focused on the development of methods to catch the cheating athlete but also to protect the clean athlete from inadvertent doping. Within the past few years several sources of inadvertent doping with anabolic agents have been identified. Among these are nutritional supplements adulterated with AAS, meat products contaminated with clenbuterol, mycotoxin (zearalenone) contamination leading to zeranol findings, and natural products containing endogenous AAS. The protection strategy consists of further investigations in case of reasonable suspicion of inadvertent doping, publication of the results, education of athletes and development of methods to differentiate between intentional and unintentional doping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.