SummaryReasons for performing studyLungeing is commonly used as part of standard lameness examinations in horses. Knowledge of how lungeing influences motion symmetry in sound horses is needed.ObjectivesThe aim of this study was to objectively evaluate the symmetry of vertical head and pelvic motion during lungeing in a large number of horses with symmetric motion during straight line evaluation.Study designCross‐sectional prospective study.MethodsA pool of 201 riding horses, all functioning well and considered sound by their owners, were evaluated in trot on a straight line and during lungeing to the left and right. From this pool, horses with symmetric vertical head and pelvic movement during the straight line trot (n = 94) were retained for analysis. Vertical head and pelvic movements were measured with body mounted uniaxial accelerometers. Differences between vertical maximum and minimum head (HDmax, HDmin) and pelvic (PDmax, PDmin) heights between left and right forelimb and hindlimb stances were compared between straight line trot and lungeing in either direction.ResultsVertical head and pelvic movements during lungeing were more asymmetric than during trot on a straight line. Common asymmetric patterns seen in the head were more upward movement during push‐off of the outside forelimb and less downward movement during impact of the inside limb. Common asymmetric patterns seen in the pelvis were less upward movement during push‐off of the outside hindlimb and less downward movement of the pelvis during impact of the inside hindlimb. Asymmetric patterns in one lunge direction were frequently not the same as in the opposite direction.ConclusionsLungeing induces systematic asymmetries in vertical head and pelvic motion patterns in horses that may not be the same in both directions. These asymmetries may mask or mimic fore‐ or hindlimb lameness.
Lungeing is an important part of lameness examinations, since the circular path enforced during lungeing is thought to accentuate low grade lameness. However, during lungeing the movement of sound horses becomes naturally asymmetric, which may mimic lameness. Also, compensatory movements in the opposite half of the body may mimic lameness. The aim of this study was to objectively study the presence of circle-dependent and compensatory movement asymmetries in horses with induced lameness. Ten horses were trotted in a straight line and lunged in both directions on a hard surface. Lameness was induced (reversible hoof pressure) in each limb, one at a time, in random order. Vertical head and pelvic movements were measured with body-mounted, uni-axial accelerometers. Differences between maximum and minimum height observed during/after left and right stance phases for the head (HDmax, HDmin) and pelvis (PDmax, PDmin) were measured. Mixed models were constructed to study the effect of lungeing direction and induction, and to quantify secondary compensatory asymmetry mechanisms in the forelimbs and hind limbs. Head and pelvic movement symmetries were affected by lungeing. Minimum pelvic height difference (PDmin) changed markedly, increasing significantly during lungeing, giving the impression of inner hind limb lameness. Primary hind limb lameness induced compensatory head movement, which mimicked an ipsilateral forelimb lameness of almost equal magnitude to the primary hind limb lameness. This could contribute to difficulty in correctly detecting hind limb lameness. Induced forelimb lameness caused both a compensatory contralateral (change in PDmax) and an ipsilateral (change in PDmin) hind limb asymmetry, potentially mimicking hind limb lameness, but of smaller magnitude. Both circle-dependent and compensatory movement mechanisms must be taken into account when evaluating lameness.
This study provides quantitative data on the effect of head/neck positions on thoracolumbar motion and may help in discussions on the ethical acceptability of some training methods.
Head and neck positions influence significantly the kinematics of the ridden horse. It is important for riders and trainers to be aware of these effects in dressage training.
SummaryReasons for performing studyLungeing is an important part of lameness examinations as the circular path may accentuate low‐grade lameness. Movement asymmetries related to the circular path, to compensatory movements and to pain make the lameness evaluation complex. Scientific studies have shown high inter‐rater variation when assessing lameness during straight line movement.ObjectivesThe aim was to estimate inter‐ and intra‐rater agreement of equine veterinarians evaluating lameness from videos of sound and lame horses during lungeing and to investigate the influence of veterinarians’ experience and the objective degree of movement asymmetry on rater agreement.Study designCross‐sectional observational study.MethodsVideo recordings and quantitative gait analysis with inertial sensors were performed in 23 riding horses of various breeds. The horses were examined at trot on a straight line and during lungeing on soft or hard surfaces in both directions. One video sequence was recorded per condition and the horses were classified as forelimb lame, hindlimb lame or sound from objective straight line symmetry measurements. Equine veterinarians (n = 86), including 43 with >5 years of orthopaedic experience, participated in a web‐based survey and were asked to identify the lamest limb on 60 videos, including 10 repeats. The agreements between (inter‐rater) and within (intra‐rater) veterinarians were analysed with κ statistics (Fleiss, Cohen).ResultsInter‐rater agreement κ was 0.31 (0.38/0.25 for experienced/less experienced) and higher for forelimb (0.33) than for hindlimb lameness (0.11) or soundness (0.08) evaluation. Median intra‐rater agreement κ was 0.57.ConclusionsInter‐rater agreement was poor for less experienced raters, and for all raters when evaluating hindlimb lameness. Since identification of the lame limb/limbs is a prerequisite for successful diagnosis, treatment and recovery, the high inter‐rater variation when evaluating lameness on the lunge is likely to influence the accuracy and repeatability of lameness examinations and, indirectly, the efficacy of treatment.
Quantitative gait analysis has the potential to offer objective and unbiased gait information that can assist clinical decision-making. In recent years, a growing number of gait analysis systems have come onto the market, highlighting the demand for such technology in equine orthopaedics. However, it is imperative that the measured variables which are used as outcome parameters are supported by scientific evidence and that the interpretation of such measurements is backed by a proper understanding of the biomechanical principles of equine locomotion. This review, which is based on studies on experimentally induced lameness, summarises the currently most widely used methods for gait analysis and the available evidence concerning gait parameters that can be used to quantify gait changes due to lameness. These are discussed regarding their current and future potential for routine clinical application.
Summary Reasons for performing study: A common opinion among riders and in the literature is that the positioning of the head and neck influences the back of the horse, but this has not yet been measured objectively. Objectives: To evaluate the effect of head and neck position on the kinematics of the back in riding horses. Methods: Eight Warmblood riding horses in regular work were studied on a treadmill at walk and trot with the head and neck in 3 different predetermined positions achieved by side reins attached to the bit and to an anticast roller. The 3‐dimensional movement of the thoracolumbar spine was measured from the position of skin‐fixed markers recorded by infrared videocameras. Results: Head and neck position influenced the movements of the back, especially at the walk. When the head was fixed in a high position at the walk, the flexion‐extension movement and lateral bending of the lumbar back, as well as the axial rotation, were significantly reduced when compared to movements with the head free or in a low position. At walk, head and neck position also significantly influenced stride length, which was shortest with the head in a high position. At trot, the stride length was independent of head position. Conclusions: Restricting and restraining the position and movement of the head and neck alters the movement of the back and stride characteristics. With the head and neck in a high position stride length and flexion and extension of the caudal back were significantly reduced. Potential relevance: Use of side reins in training and rehabilitation programmes should be used with an understanding of the possible effects on the horse's back.
Recent studies evaluating horses in training and considered free from lameness by their owners have identified a large proportion of horses with motion asymmetries. However the prevalence, type and magnitude of asymmetries when trotting in a straight line or on the lunge have not been investigated. The aim of this study was to objectively investigate the presence of motion asymmetries in riding horses in training by identifying the side and quantifying the degree and type (impact, pushoff) of forelimb and hind limb asymmetries found during straight line trot and on the lunge. In a cross-sectional study, vertical head and pelvic movement symmetry was measured in 222 Warmblood type riding horses, all without perceived performance issues and considered free from lameness by their owners. Body-mounted uni-axial accelerometers were used and differences between maximum and minimum head (HDmax, HDmin) and pelvic (PDmax, PDmin) vertical displacement between left and right forelimb and hind limb stances were calculated during straight line trot and on the lunge. Previously reported symmetry thresholds were used. The thresholds for symmetry were exceeded in 161 horses for at least one variable while trotting in a straight line, HDmin (n = 58, mean 14.3 mm, SD 7.1), HDmax (n = 41, mean 12.7 mm, SD 5.5), PDmax (n = 87, mean 6.5 mm, SD 3.10), PDmin (n = 79, mean 5.7 mm, SD 2.1). Contralateral and ipsilateral concurrent forelimb and hind limb asymmetries were detected in 41 and 49 horses, respectively. There was a linear association between the straight line PDmin values and the values on the lunge with the lame limb to the inside of the circle. A large proportion (72.5%) of horses in training which were perceived as free from lameness by their owner showed movement asymmetries above previously reported asymmetry thresholds during straight line trot. It is not known to what extent these asymmetries are related to pain or to mechanical abnormalities. Therefore, one of the most important questions that must be addressed is how objective asymmetry scores can be translated into pain, orthopedic abnormality, or any type of unsoundness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.