PCSK9 critically controls LDLR expression in pancreas perhaps contributing to the maintenance of a proper physiological balance to limit cholesterol overload in beta cells. This effect is independent of circulating PCSK9 and is probably related to locally produced PCSK9.
Therapeutic approaches to metabolic syndrome (MetS) are numerous and may target lipoproteins, blood pressure or anthropometric indices. Peroxisome proliferator-activated receptors (PPARs) are involved in the metabolic regulation of lipid and lipoprotein levels, i.e., triglycerides (TGs), blood glucose, and abdominal adiposity. PPARs may be classified into the α, β/δ and γ subtypes. The PPAR-α agonists, mainly fibrates (including newer molecules such as pemafibrate) and omega-3 fatty acids, are powerful TG-lowering agents. They mainly affect TG catabolism and, particularly with fibrates, raise the levels of high-density lipoprotein cholesterol (HDL-C). PPAR-γ agonists, mainly glitazones, show a smaller activity on TGs but are powerful glucose-lowering agents. Newer PPAR-α/δ agonists, e.g., elafibranor, have been designed to achieve single drugs with TG-lowering and HDL-C-raising effects, in addition to the insulin-sensitizing and antihyperglycemic effects of glitazones. They also hold promise for the treatment of non-alcoholic fatty liver disease (NAFLD) which is closely associated with the MetS. The PPAR system thus offers an important hope in the management of atherogenic dyslipidemias, although concerns regarding potential adverse events such as the rise of plasma creatinine, gallstone formation, drug–drug interactions (i.e., gemfibrozil) and myopathy should also be acknowledged.
BackgroundProprotein convertase subtilisin/kexin type 9 (PCSK9) circulating levels are significantly associated with an increased risk of cardiovascular events. This study aimed to evaluate the relationship between circulating levels of PCSK9 and arterial stiffness, an early instrumental biomarker of cardiovascular disease risk, in a large sample of overall healthy participants.Methods and ResultsFrom the historical cohort of the Brisighella Heart Study, after exclusion of active smokers, participants in secondary prevention for cardiovascular disease, and patients in treatment with statins or vasodilating agents, we selected 227 premenopausal women and 193 age‐matched men and 460 postmenopausal women and 416 age‐matched men. In these participants, we evaluated the correlation between PCSK9 plasma circulating levels and pulse wave velocity. Postmenopausal women showed higher PCSK9 levels (309.9±84.1 ng/mL) compared with the other groups (P<0.001). Older men had significant higher levels than younger men (283.2±75.6 versus 260.9±80.4 ng/mL; P=0.008). In the whole sample, pulse wave velocity was predicted mainly by age (B=0.116, 95% CI 0.96–0.127, P<0.001), PCSK9 (B=0.014, 95% CI 0.011–0.016, P<0.001), and serum uric acid (B=0.313, 95% CI 0.024–0.391, P=0.026). Physical activity, low‐density lipoprotein cholesterol, high‐density lipoprotein cholesterol, and estimated glomerular filtration rate were not associated with pulse wave velocity (P>0.05).By considering the subgroups described, age and PCSK9 levels were mainly associated with pulse wave velocity, which also correlated with serum uric acid in postmenopausal women.ConclusionsIn the Brisighella Heart Study cohort, circulating PCSK9 is significantly related to arterial stiffness, independent of sex and menopausal status in women.
Background Probiotics incorporated into dairy products have been shown to reduce total (TC) and LDL cholesterolemia (LDL-C) in subjects with moderate hypercholesterolemia. More specifically, probiotics with high biliary salt hydrolase activity, e.g. Bifidobacterium longum BB536, may decrease TC and LDL-C by lowering intestinal cholesterol reabsorption and, combined with other nutraceuticals, may be useful to manage hypercholesterolemia in subjects with low cardiovascular (CV) risk. This study was conducted to evaluate the efficacy and safety of a nutraceutical combination containing Bifidobacterium longum BB536, red yeast rice (RYR) extract (10 mg/day monacolin K), niacin, coenzyme Q10 (Lactoflorene Colesterolo®). The end-points were changes of lipid CV risk markers (LDL-C, TC, non-HDL-cholesterol (HDL-C), triglycerides (TG), apolipoprotein B (ApoB), HDL-C, apolipoprotein AI (ApoAI), lipoprotein(a) (Lp(a), proprotein convertase subtilisin/kexin type 9 (PCSK9)), and of markers of cholesterol synthesis/absorption. Methods A 12-week randomized, parallel, double-blind, placebo-controlled study. Thirty-three subjects (18–70 years) in primary CV prevention and low CV risk (SCORE: 0–1% in 24 and 2–4% in 9 subjects; LDL-C: 130–200 mg/dL) were randomly allocated to either nutraceutical ( N = 16) or placebo ( N = 17). Results Twelve-week treatment with the nutraceutical combination, compared to placebo, significantly reduced TC (− 16.7%), LDL-C (− 25.7%), non-HDL-C (− 24%) (all p < 0.0001), apoB (− 17%, p = 0.003). TG, HDL-C, apoAI, Lp(a), PCSK9 were unchanged. Lathosterol:TC ratio was significantly reduced by the nutraceutical combination, while campesterol:TC ratio and sitosterol:TC ratio did not change, suggesting reduction of synthesis without increased absorption of cholesterol. No adverse effects and a 97% compliance were observed. Conclusions A 12-week treatment with a nutraceutical combination containing the probiotic Bifidobacterium longum BB536 and RYR extract significantly improved the atherogenic lipid profile and was well tolerated by low CV risk subjects. Trial registration NCT02689934 . Electronic supplementary material The online version of this article (10.1186/s12937-019-0438-2) contains supplementary material, which is available to authorized users.
The repair and replacement of blood vessels is one of the most challenging topics for biomedical research. Autologous vessels are preferred as graft materials, but they still have many issues to overcome: for instance, they need multiple surgical procedures and often patients may not have healthy and surgically valuable arteries useful as an autograft. A tissue-engineering approach is widely desirable to generate biological vascular prostheses. Recently, decellularization of native tissue has gained significant attention in the biomedical research field. This method is used to obtain biological scaffolds that are expected to maintain the complex three-dimensional structure of the extracellular matrix, preserving the biomechanical properties of the native tissues. The decellularizing methods and the biomechanical characteristics of these products are presented in this review. Decellularization of biological matrices induces the loss of major histocompatibility complex (MHC), which is expected to promote an immunological response by the host. All the studies showed that decellularized biomaterials possess adequate properties for xenografting. Concerning their mechanical properties, several studies have demonstrated that, although chemical decellularization methods do not affect the scaffolds' mechanical properties, these materials can be modified through different treatments in order to provide the desired mechanical characteristics, depending on the specific application. A short overview of legislative issues concerning the use of decellularized substitutes and future perspectives in surgical applications is also presented. Copyright © 2015 John Wiley & Sons, Ltd.
Recent evidence suggests that oxidative stress can play a role in the pathogenesis and the progression of prostate cancer (PCa). Reactive oxygen species (ROS) generation is higher in PCa cells compared to normal prostate epithelial cells and this increase is proportional to the aggressiveness of the phenotype. Since high density lipoproteins (HDL) are known to exert antioxidant activities, their ability to reduce ROS levels and the consequent impact on cell proliferation was tested in normal and PCa cell lines. HDL significantly reduced basal and H2O2-induced oxidative stress in normal, androgen receptor (AR)-positive and AR-null PCa cell lines. AR, scavenger receptor BI and ATP binding cassette G1 transporter were not involved. In addition, HDL completely blunted H2O2-induced increase of cell proliferation, through their capacity to prevent the H2O2-induced shift of cell cycle distribution from G0/G1 towards G2/M phase. Synthetic HDL, made of the two main components of plasma-derived HDL (apoA-I and phosphatidylcholine) and which are under clinical development as anti-atherosclerotic agents, retained the ability of HDL to inhibit ROS production in PCa cells. Collectively, HDL antioxidant activity limits cell proliferation induced by ROS in AR-positive and AR-null PCa cell lines, thus supporting a possible role of HDL against PCa progression.
In this observational study, we compared the effect of lipoprotein apheresis and evolocumab or alirocumab on levels of lipoprotein cholesterol, triglycerides and inflammatory markers (C reactive protein and interleukin 6) in cardiovascular patients ( n = 9). Patients were monitored during the last year of lipoprotein apheresis followed by six months of treatment with proprotein convertase subtilisin/kexin type 9 inhibitors. The biochemical parameters were determined pre- and post- every apheresis procedure for 12 months and then after one, three and six months of treatment with evolocumab (140 mg every two weeks [Q2W]) or alirocumab (75 mg or 150 mg every two weeks [Q2W]). Lipoprotein apheresis significantly reduced low-density lipoprotein cholesterol levels from 138 ± 32 mg/dl to 46 ± 16 mg/dl ( p < 0.001), with an inter-apheresis level of 114 ± 26 mg/dl. Lipoprotein(a) was also reduced from a median of 42 mg/dl to 17 mg/dl ( p < 0.01). Upon anti-proprotein convertase subtilisin/kexin type 9 therapy, low-density lipoprotein cholesterol levels were similar to post-apheresis (59 ± 25, 41 ± 22 and 42 ± 21mg/dl at one, three and six months, respectively) as well as those of lipoprotein(a) (18 mg/dl). However, an opposite effect was observed on high-density lipoprotein cholesterol levels: -16.0% from pre- to post-apheresis and +34.0% between pre-apheresis and proprotein convertase subtilisin/kexin type 9 inhibitors. Apheresis significantly reduced high-sensitivity C-reactive protein levels (1.5 ± 1.2 mg/l pre-apheresis to 0.6 ± 0.6 mg/l post-apheresis), while no changes were found upon proprotein convertase subtilisin/kexin type 9 mAbs administration. In conclusion, our study demonstrated that, by switching from lipoprotein apheresis to anti-proprotein convertase subtilisin/kexin type 9 therapies, patients reached similar low-density lipoprotein cholesterol and lipoprotein(a) levels, increased those of high-density lipoprotein cholesterol, and showed no changes on high-sensitivity C-reactive protein.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers