Novel evidence that the mannan-binding lectin (MBL) pathway of complement activation plays a pivotal role in triggering mobilization of hematopoietic stem/progenitor cells by activation of both the complement and coagulation cascades
Evidence has accumulated that adult hematopoietic tissues and other organs contain a population of dormant stem cells (SCs) that are more primitive than other, already restricted, monopotent tissue-committed stem cells (TCSCs). These observations raise several questions, such as the developmental origin of these cells, their true pluripotent or multipotent nature, which surface markers they express, how they can be efficiently isolated from adult tissues, and what role they play in the adult organism. The phenotype of these cells and expression of some genes characteristic of embryonic SCs (ESCs), epiblast SCs (EPiSCs), and primordial germ cells (PGCs) suggests their early-embryonic deposition in developing tissues as precursors of adult SCs. In this review we will critically discuss all these questions and the concept that small dormant stem cells related to migratory PGCs, described as very small embryonic-like stem cells (VSELs), are deposited during embryogenesis in bone marrow and other organs as a backup population for adult tissue committed stem cells (TCSCs) and are involved in several processes related to tissue or organ rejuvenation, aging, and cancerogenesis. The most recent results on successful ex vivo expansion of human VSELs in chemically defined media free from feeder-layer cells opens up new and exciting possibilities for their application in regenerative medicine.
The role of blood proteinases in the mobilization of hematopoietic stem/progenitor cells (HSPCs) is still not well understood. As previously reported, activation of the complement cascade (ComC) and cleavage of C5 by C5 convertase are enabling events in the release of C5a that plays a crucial role in the egress of HSPCs from bone marrow (BM) into peripheral blood (PB) and explains why C5-deficient mice are poor mobilizers. Here we provide evidence that during granulocyte colony-stimulating factor- and AMD3100-induced mobilization, not only the ComC but also two other evolutionarily ancient proteolytic enzyme cascades, the coagulation cascade (CoaC) and the fibrynolytic cascade (FibC), become activated. Activation of all three cascades was measured by generation of C5a, decrease in prothrombin time and activated partial thromboplastin time as well as an increase in the concentrations of plasmin/antiplasmin and thrombin/antithrombin. More importantly, the CoaC and FibC, by generating thrombin and plasmin, respectively, provide C5 convertase activity, explaining why mobilization of HSPCs in C3-deficient mice, which do not generate ComC-generated C5a convertase, is not impaired. Our observations shed more light on how the CoaC and FibC modulate stem cell mobilization and may lead to the development of more efficient mobilization strategies in poor mobilizers. Furthermore, as it is known that all these cascades are activated in all the situations in which HSPCs are mobilized from BM into PB (for example, infections, tissue/organ damage or strenuous exercise) and show a circadian rhythm of activation, they must be involved in both stress-induced and circadian changes in HSPC trafficking in PB.
Evidence has accumulated that hematopoietic stem progenitor cells (HSPCs) share several markers with the germline, a connection supported by reports that prolactin, androgens, and estrogens stimulate hematopoiesis. To address this issue more directly, we tested the expression of receptors for pituitary-derived hormones, such as follicle-stimulating hormone (FSH) and luteinizing hormone (LH), on purified murine bone marrow (BM) cells enriched for HSPCs and tested the functionality of these receptors in ex vivo signal transduction studies and in vitro clonogenic assays. We also tested whether administration of pituitary-and gonad-derived sex hormones (SexHs) increases incorporation of bromodeoxyuridine (BrdU) into HSPCs and expansion of hematopoietic clonogenic progenitors in mice and promotes recovery of blood counts in sublethally irradiated animals. We report for the first time that HSPCs express functional FSH and LH receptors and that both proliferate in vivo and in vitro in response to stimulation by pituitary SexHs. Furthermore, based on our observations that at least some of CD45 -very small embryonic-like stem cells (VSELs) may become specified into CD45+ HSPCs, we also evaluated the expression of pituitary and gonadal SexHs receptors on these cells and tested whether these quiescent cells may expand in vivo in response to SexHs administration. We found that VSELs express SexHs receptors and respond in vivo to SexHs stimulation, as evidenced by BrdU accumulation. Since at least some VSELs share several markers characteristic of migrating primordial germ cells and can be specified into HSPCs, this observation sheds new light on the BM stem cell hierarchy.
Hematopoietic stem/progenitor cells (HSPCs) reside in the bone marrow (BM) microenvironment and are retained there by the interaction of membrane lipid raft-associated receptors, such as the α-chemokine receptor CXCR4 and the α4β1-integrin (VLA-4, very late antigen 4 receptor) receptor, with their respective specific ligands, stromal-derived factor 1 and vascular cell adhesion molecule 1, expressed in BM stem cell niches. The integrity of the lipid rafts containing these receptors is maintained by the glycolipid glycosylphosphatidylinositol anchor (GPI-A). It has been reported that a cleavage fragment of the fifth component of the activated complement cascade, C5a, has an important role in mobilizing HSPCs into the peripheral blood (PB) by (i) inducing degranulation of BM-residing granulocytes and (ii) promoting their egress from the BM into the PB so that they permeabilize the endothelial barrier for subsequent egress of HSPCs. We report here that hematopoietic cell-specific phospholipase C-β2 (PLC-β2) has a crucial role in pharmacological mobilization of HSPCs. On the one hand, when released during degranulation of granulocytes, it digests GPI-A, thereby disrupting membrane lipid rafts and impairing retention of HSPCs in BM niches. On the other hand, it is an intracellular enzyme required for degranulation of granulocytes and their egress from BM. In support of this dual role, we demonstrate that PLC-β2-knockout mice are poor mobilizers and provide, for the first time, evidence for the involvement of this lipolytic enzyme in the mobilization of HSPCs.
• 37 genes were evaluated in the context of breast and ovarian cancer predisposition. • Several non-BRCA1/2 genes were attributed to high breast/ovarian cancer risk. • Mutations in CDKN2A contribute to high risk of breast cancer, comparable to BRCA2. • Profiles of genes contributing to breast and ovarian cancer differ substantially. • RAD51C, RAD51D, and BRIP1 are proved to be high-risk ovarian, but not breast cancer genes.
Successful clinical outcomes from transplantation of hematopoietic stem cells (HSCs) depend upon efficient HSC homing to bone marrow (BM), subsequent engraftment, and, finally, BM repopulation. Homing of intravenously administered HSCs from peripheral blood (PB) through the circulation to the BM stem cell niches, which is the first critical step that precedes their engraftment, is enforced by chemotactic factors released in the BM microenvironment that chemoattract HSCs. These chemotactic factors include α-chemokine stromal-derived factor 1 (SDF-1), the bioactive phosphosphingolipids sphingosine-1-phosphate (S1P) and ceramid-1-phosphate (C1P), and the extracellular nucleotides ATP and UTP. Stem cells may also respond to a Ca2+ or H+ gradient by employing calcium- or proton-sensing receptors, respectively. In this review, we will present emerging strategies based on ex vivo manipulation of graft HSCs that are aimed at enhancing the responsiveness of HSCs to BM-secreted chemoattractants and/or promoting HSC adhesion and seeding efficiency in the BM microenvironment.
The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2–H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.