Ultrasonography of ONSD shows a good level of diagnostic accuracy for detecting intracranial hypertension. In clinical decision-making, this technique may help physicians decide to transfer patients to specialized centers or to place an invasive device when specific recommendations for this placement do not exist.
Exogenous supplemental lactate can be utilized aerobically as a preferential energy substrate by the injured human brain, with sparing of cerebral glucose. Increased availability of cerebral extracellular pyruvate and glucose, coupled with a reduction of brain glutamate and ICP, suggests that hypertonic lactate therapy has beneficial cerebral metabolic and hemodynamic effects after TBI.
Growing evidence suggests that endogenous lactate is an important substrate for neurons. This study aimed to examine cerebral lactate metabolism and its relationship with brain perfusion in patients with severe traumatic brain injury (TBI). A prospective cohort of 24 patients with severe TBI monitored with cerebral microdialysis (CMD) and brain tissue oxygen tension (PbtO2) was studied. Brain lactate metabolism was assessed by quantification of elevated CMD lactate samples (>4 mmol/L); these were matched to CMD pyruvate and PbtO2 values and dichotomized as glycolytic (CMD pyruvate >119 μmol/L vs. low pyruvate) and hypoxic (PbtO2 <20 mm Hg vs. nonhypoxic). Using perfusion computed tomography (CT), brain perfusion was categorized as oligemic, normal, or hyperemic, and was compared with CMD and PbtO2 data. Samples with elevated CMD lactate were frequently observed (41±8%), and we found that brain lactate elevations were predominantly associated with glycolysis and normal PbtO2 (73±8%) rather than brain hypoxia (14±6%). Furthermore, glycolytic lactate was always associated with normal or hyperemic brain perfusion, whereas all episodes with hypoxic lactate were associated with diffuse oligemia. Our findings suggest predominant nonischemic cerebral extracellular lactate release after TBI and support the concept that lactate may be used as an energy substrate by the injured human brain.
Background: Elevated intracranial pressure (ICP) is frequent after traumatic brain injury (TBI) and may cause abnormal pupillary reactivity, which in turn is associated with a worse prognosis. Using automated infrared pupillometry, we examined the relationship between the Neurological Pupil index (NPi) and invasive ICP in patients with severe TBI. Methods: This was an observational cohort of consecutive subjects with severe TBI (Glasgow Coma Scale [GCS] < 9 with abnormal lesions on head CT) who underwent parenchymal ICP monitoring and repeated NPi assessment with the NPi-200® pupillometer. We examined NPi trends over time (four consecutive measurements over intervals of 6 h) prior to sustained elevated ICP > 20 mmHg. We further analyzed the relationship of cumulative abnormal NPi burden (%NPi values < 3 during total ICP monitoring time) with intracranial hypertension (ICHT)-categorized as refractory (ICHT-r; requiring surgical decompression) vs. non-refractory (ICHT-nr; responsive to medical therapy)-and with the 6-month Glasgow Outcome Score (GOS). Results: A total of 54 patients were studied (mean age 54 ± 21 years, 74% with focal injuries on CT), of whom 32 (59%) had ICHT. Among subjects with ICHT, episodes of sustained elevated ICP (n = 43, 172 matched ICP-NPi samples; baseline ICP [T − 6 h ] 14 ± 5 mmHg vs. ICPmax [T 0 h ] 30 ± 9 mmHg) were associated with a concomitant decrease of the NPi (baseline 4.2 ± 0.5 vs. 2.8 ± 1.6, p < 0.0001 ANOVA for repeated measures). Abnormal NPi values were more frequent in patients with ICHT-r (n = 17; 38 [3-96]% of monitored time vs. 1 [0-9]% in patients with ICHT-nr [n = 15] and 0.5 [0-10]% in those without ICHT [n = 22]; p = 0.007) and were associated with an unfavorable 6-month outcome (15 [1-80]% in GOS 1-3 vs. 0 [0-7]% in GOS 4-5 patients; p = 0.002). Conclusions: In a selected cohort of severe TBI patients with abnormal head CT lesions and predominantly focal cerebral injury, elevated ICP episodes correlated with a concomitant decrease of NPi. Sustained abnormal NPi was in turn associated with a more complicated ICP course and worse outcome.
Background and objective The optimal management of large vestibular schwannomas continues to be debated. We constituted a task force comprising the members of the EANS skull base committee along with international experts to derive recommendations for the management of this problem from a European perspective. Material and methods A systematic review of MEDLINE database, in compliance with the PRISMA guidelines, was performed. A subgroup analysis screening all surgical series published within the last 20 years (January 2000 to March 2020) was performed. Weighted summary rates for tumor resection, oncological control, and facial nerve preservation were determined using meta-analysis models. This data along with contemporary practice patterns were discussed within the task force to generate consensual recommendations regarding preoperative evaluations, optimal surgical strategy, and follow-up management. Results Tumor classification grades should be systematically used in the perioperative management of patients, with large vestibular schwannomas (VS) defined as > 30 mm in the largest extrameatal diameter. Grading scales for pre- and postoperative hearing (AAO-HNS or GR) and facial nerve function (HB) are to be used for reporting functional outcome. There is a lack of consensus to support the superiority of any surgical strategy with respect to extent of resection and use of adjuvant radiosurgery. Intraoperative neuromonitoring needs to be routinely used to preserve neural function. Recommendations for postoperative clinico-radiological evaluations have been elucidated based on the surgical strategy employed. Conclusion The main goal of management of large vestibular schwannomas should focus on maintaining/improving quality of life (QoL), making every attempt at facial/cochlear nerve functional preservation while ensuring optimal oncological control, thereby allowing to meet patient expectations. Despite the fact that this analysis yielded only a few Class B evidences and mostly expert opinions, it will guide practitioners to manage these patients and form the basis for future clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.