Particle-based simulation methods, such as the discrete-element method and smoothed particle hydrodynamics, have specific advantages in modelling complex three-dimensional (3D) environmental fluid and particulate flows. The theory of both these methods and their relative advantages compared with traditional methods will be discussed. Examples of 3D flows on realistic topography illustrate the environmental application of these methods. These include the flooding of a river valley as a result of a dam collapse, coastal inundation by a tsunami, volcanic lava flow and landslides. Issues related to validation and quality data availability are also discussed.
The geometric complexity and high fluid speeds involved in high pressure die casting (HPDC) combine to give strongly three-dimensional fluid flow with significant free surface fragmentation and splashing. A Lagrangian simulation technique that is particularly well suited to modelling HPDC is smoothed particle hydrodynamics (SPH). Materials are approximated by particles that are free to move around rather than by fixed grids, enabling the accurate prediction of fluid flows involving complex free surface motion.Validation of isothermal SPH flow predictions for the casting of a servo piston head using water analogue experiments is presented. Comparison with MAGMAsoft predictions provides information of the relative strengths of these two approaches. The SPH simulations were better able to capture the key details of the fluid motion and splashing, particularly the relative rates of flow around sharp bends and through thin sections. Validation of flow predictions coupled to temperature and solidification using short shots are also presented. The bulk features of the final solid castings are in good agreement with the predictions.Several automotive examples of SPH simulated HPDC flows are presented, ranging from simple cases such as a servo piston to steering column components and a full engine rocker cover. These show unprecedented detail in the fluid free surfaces, particularly in the extent of fragmentation and void formation.These results together combine to demonstrate that SPH modelling of HPDC has now reached a level where both isothermal and thermal simulations can be performed in reasonable computation times for large scale automotive castings and provide a high degree of predictive accuracy. Crown
The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.