Original scientific paperThe objective of the proposed work is to investigate the performance of hybrid self tuned fuzzy proportional integral derivative (STFPID) controller for brushless DC (BLDC) motor drive. The proposed hybrid STFPID controller includes a proportional integral derivative (PID) controller at steady state, a PID type self tuned fuzzy logic (FL) controller (STFLC) at transient state thereby combining the merits of both the controllers. The switching function incorporated in the controller ensures desired control response at various operating conditions by appropriately switching between PID and STFPID based on speed error. A detailed simulation study and performance comparison with other control approaches is performed to highlight the merits of the proposed work. The simulation results indicate that the proposed controller is robust with fast tracking capability and less steady state error. The experimental results are provided to validate the simulation study.Key words: BLDC motor drive, speed control, self tuned fuzzy logic controller, Hybrid controller, PID controller.Hibridni samopodešavajući neizraziti PID regulator za upravljanje brzinom bezkolektorskog istosmjernog motora.Cilj ovog rada je istražiti performance hibridnog samopodešavajućeg regulatora za bezkolektorski istosmjerni motor. Predloženi hibridni samopodešavajući neizraziti regulator uključuje PID regulator u stacionarnom stanju i samopodešavajući neizraziti PID regulator (STFLC) za vrijeme trajanja prijelazne pojave kombinirajući prednosti oba regulatora. Funkcija prekapčanja regulatora omogućava upravljanje u različitim uvjetima odgovarajućim odabirom izme u PID i samopodešavajućeg neizrazitog PID regulatora na temelju brzine pogreške. Provedena je detaljna simulacijska analiza i usporedba performansi s ostalim metodama upravljanja kako bi se istaknule prednosti predloženog rada. Iz simulacijskih rezultata je vidljivo je robusno svojstvo predloženenog regulatora te smanjena pogreška u stacionarnom stanju. Sustav pravljanja testiran je i eksperimentalno kao potvrda simulacijskih rezultata.
This paper presents the modelling, design and power management of a hybrid energy storage system for a three-wheeled light electric vehicle under Indian driving conditions. The hybrid energy storage system described in this paper is characterized by effective coupling of Li-ion battery (primary energy source) and ultracapacitor (auxiliary source) interfaced with an efficient bi-directional converter. A design methodology related to vehicle modelling, choice of motor rating, converter design, sizing of Li-ion battery and ultracapacitor pack for the Indian driving cycle are presented. An improved real-time power-split management control strategy is proposed for proper power flow control of the hybrid energy storage system under various operating modes. The hybridized energy storage system with proposed control strategy improves the life of the battery and helps in effective utilization of the ultracapacitor. Furthermore, a relative comparison of the hybrid energy storage system with the battery energy storage system based on battery parameters and capital cost is also presented. Simulations are carried out in MATLAB/Simulink environment to verify the effectiveness of the proposed control strategy with modelled system components of three-wheeled light electric vehicle. A downscaled experimental prototype is built to validate the power-split between hybrid energy storage systems.
Power electronic interface with its effective control scheme plays a major role in the utilization of energy sources for electric vehicle application. For this purpose, a hybrid fuzzy PI based control scheme for a multiple input converter (MIC) topology is proposed. The proposed hybrid fuzzy PI controller includes a conventional PI controller at steady state and fuzzy PI at transient state. Also, the proposed control design helps in tracking a predefined speed profile to have complete realization of electric vehicle. Detailed simulation study and performance comparisons with conventional controller are performed. The results show that the developed control scheme is robust providing bidirectional power management, fast tracking capability with less steady state error, better dynamic response by enhancing the flexibility and proper utilization of energy sources. Simulation in MATLAB/SIMULINK environment is carried out to verify the performance of the multi-input converter with the developed control scheme. An experimental setup is constructed to validate the same.
Multilevel converter technology has recently emerged as a very important alternative in the area of high-power applications. Several modulation methods have been applied to multilevel Inverters. The modulation methods with higher switching frequency reduce filter size but increases switching losses. The Step modulation method operates with low switching frequency has less switching losses but it requires large filter size. To reduce the filter size the number of levels of the inverter is increased but it increases the cost of the system. This paper presents a novel modulation method where additional notches are introduced in the multi-level output voltage. These notches eliminate harmonics at the low order/frequency and shifts it a higher order/frequency and hence the filter size is reduced without increasing the switching losses and cost of the system. The proposed modulation method is verified through simulation and such results are also validated practically using a five-level Diode-clamped inverter prototype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.