Background: A mother's own milk (MOM) is the gold standard for the feeding and nutrition of preterm and full term infants. When MOM is not available or there is not enough, donor human milk (DHM) should be used. Milk delivered to Human Milk Banks (HMBs) should be pasteurized to inactivate viral and bacterial agents. Currently, a pasteurization process at 62.5°C for 30 min (Holder pasteurization, HoP) is recommended in all international HMBs guidelines. State of the art: It is known that HoP affects some of the nutritional and biological components of human milk. Studies have demonstrated that temperature cycle in HoP is not always controlled or calibrated. A better check of these parameters in the pasteurizers on the market today may contribute to an improvement of the quality of HM, still maintaining some of the negative effects of the heat treatment of human milk. So, food industry, and dairy industry in particular, are evaluating innovative methodologies alternative to HoP to better preserve the nutritional and biological properties of fresh human milk, while assuring at least the same microbiological safety of HoP. The most studied processing techniques include High-Temperature-Short-Time (HTST) pasteurization, High Pressure Processing (HPP), and Ultraviolet-C (UV-C) irradiation. HTST is a thermal process in which milk is forced between plates or pipes that are heated on the outside by hot water at a temperature of 72°C for 5–15 s. HPP is a non-thermal processing method that can be applied to solid and liquid foods. This technology inactivates pathogenic microorganisms by applying a high hydrostatic pressure (usually 300–800 MPa) during short-term treatments (<5–10 min). UV irradiation utilizes short-wavelength ultraviolet radiation in the UV-C region (200–280 nm), which is harmful to microorganisms. It is effective in destroying the nucleic acids in these organisms, so that their DNA is disrupted by UV radiation. Aim: The aim of this paper is to present the EMBA recommendations on processing of HM, based on the most recent results obtained with these new technologies. Conclusions: Although research on the most promising technologies that will represent an alternative to HoP (HTST, HPP, UV-C) in the future is progressing, it is now important to recognize that the consistency and quality assurance of the pasteurizers on the market today represent a fundamental component that was previously lacking in the Holder approach.
BackgroundHuman milk possesses bacteriostatic properties, largely due to the presence of immunological proteins. Heat treatments such as Holder pasteurization reduce the concentration of immunological proteins in human milk and consequently increase the bacterial growth rate. This study investigated the bacterial growth rate and the immunological protein concentration of ultraviolet (UV-C) irradiated, Holder pasteurized and untreated human milk.MethodsSamples (n=10) of untreated, Holder pasteurized and UV-C irradiated human milk were inoculated with E. coli and S. aureus and the growth rate over 2 hours incubation time at 37°C was observed. Additionally, the concentration of sIgA, lactoferrin and lysozyme of untreated and treated human milk was analyzed.ResultsThe bacterial growth rate of untreated and UV-C irradiated human milk was not significantly different. The bacterial growth rate of Holder pasteurized human milk was double compared to untreated human milk (p<0.001). The retention of sIgA, lactoferrin and lysozyme after UV-C irradiation was 89%, 87%, and 75% respectively, which were higher than Holder treated with 49%, 9%, and 41% respectively.ConclusionUV-C irradiation of human milk preserves significantly higher levels of immunological proteins than Holder pasteurization, resulting in bacteriostatic properties similar to those of untreated human milk.
BackgroundHolder pasteurization (milk held at 62.5°C for 30 minutes) is the standard treatment method for donor human milk. Although this method of pasteurization is able to inactivate most bacteria, it also inactivates important bioactive components. Therefore, the objective of this study was to investigate ultraviolet irradiation as an alternative treatment method for donor human milk.MethodsHuman milk samples were inoculated with five species of bacteria and then UV-C irradiated. Untreated and treated samples were analysed for bacterial content, bile salt stimulated lipase (BSSL) activity, alkaline phosphatase (ALP) activity, and fatty acid profile.ResultsAll five species of bacteria reacted similarly to UV-C irradiation, with higher dosages being required with increasing concentrations of total solids in the human milk sample. The decimal reduction dosage was 289±17 and 945±164 J/l for total solids of 107 and 146 g/l, respectively. No significant changes in the fatty acid profile, BSSL activity or ALP activity were observed up to the dosage required for a 5-log10 reduction of the five species of bacteria.ConclusionUV-C irradiation is capable of reducing vegetative bacteria in human milk to the requirements of milk bank guidelines with no loss of BSSL and ALP activity and no change of FA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.