The acquisition of localized molecular spectra with mass spectrometry imaging (MSI) has a great, but as yet not fully realized, potential for biomedical diagnostics and research. The methodology generates a series of mass spectra from discrete sample locations, which is often analyzed by visually interpreting specifically selected images of individual masses. We developed an intuitive color-coding scheme based on hyperspectral imaging methods to generate a single overview image of this complex data set. The image color-coding is based on spectral characteristics, such that pixels with similar molecular profiles are displayed with similar colors. This visualization strategy was applied to results of principal component analysis, self-organizing maps and t-distributed stochastic neighbor embedding. Our approach for MSI data analysis, combining automated data processing, modeling and display, is user-friendly and allows both the spatial and molecular information to be visualized intuitively and effectively.
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) offers unique possibilities. In this paper we aim to exploit the high spatial resolution of MRI to enhance the reconstruction of simultaneously acquired PET data. We propose a new prior to incorporate structural side information into a maximum a posteriori reconstruction. The new prior combines the strengths of previously proposed priors for the same problem: it is very efficient in guiding the reconstruction at edges available from the side information and it reduces locally to edge-preserving total variation in the degenerate case when no structural information is available. In addition, this prior is segmentation-free, convex and no a priori assumptions are made on the correlation of edge directions of the PET and MRI images. We present results for a simulated brain phantom and for real data acquired by the Siemens Biograph mMR for a hardware phantom and a clinical scan. The results from simulations show that the new prior has a better trade-off between enhancing common anatomical boundaries and preserving unique features than several other priors. Moreover, it has a better mean absolute bias-to-mean standard deviation trade-off and yields reconstructions with superior relative l-error and structural similarity index. These findings are underpinned by the real data results from a hardware phantom and a clinical patient confirming that the new prior is capable of promoting well-defined anatomical boundaries.
Abstract-This paper proposes two alternative formulations to reduce the high computational complexity of tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. The first scheme consists of numerical approximations of the votes, which have been derived from an in-depth analysis of the plate and ball voting processes. The second scheme simplifies the formulation while keeping the same perceptual meaning of the original tensor voting: the stick tensor voting and the stick component of the plate tensor voting must reinforce surfaceness, the plate components of both the plate and ball tensor voting must boost curveness, whereas junctionness must be strengthened by the ball component of the ball tensor voting. Two new parameters have been proposed for the second formulation in order to control the potentially conflictive influence of the stick component of the plate vote and the ball component of the ball vote. Results show that the proposed formulations can be used in applications where efficiency is an issue, since they have a complexity of order O 1 . Moreover, the second proposed formulation has been shown to be more appropriate than the original tensor voting for estimating saliencies by appropriately setting the two new parameters.
We propose a discrete variational approach for image smoothing consisting of nonlocal data and smoothness contraints that penalise general dissimilarity measures defined on image patches. One of such dissimilarity measures is the weighted 2 distance between patches. In such a case we derive an iterative neighbourhood filter that induces a new similarity measure in the photometric domain. It can be regarded as an extended patch similarity measure that evaluates not only the patch similarity of two chosen pixels, but also the similarity of their corresponding neighbours. This leads to a more robust smoothing process since the pixels selected for averaging are more coherent with the local image structure. The suggested approach includes two recently proposed filters as special cases: The NLmeans filter of Buades et al. and the NDS filter of Mrázek et al. In fact, the approach introduced here can be considered as a generalisation of the latter filter. We evaluate our method for the task of denoising greyscale and colour images degraded by Gaussian and impulse noise, demonstrating that it compares very well to other more sophisticated patch-based approaches.
Many applications consecrate the use of asymmetric distributions, and practical situations often require robust parametric inference. This paper presents the derivation of M-estimators with asymmetric influence functions, motivated by the G 0 A distribution. This law, regarded as the universal model for speckled imagery, can be highly skewed and maximum likelihood estimation can be severely hampered by small percentages of outliers. These outliers appear mainly because the hypothesis of independence and equal distribution of observations are seldom satisfied in practice; for instance, in the process of filtering, some pixels within a window frequently come from regions with different underlying distributions. Traditional robust estimation methods, on the basis of symmetric robustifying functions, assume that the distribution is symmetric, but when the data distribution is asymmetric, these methods yield biased estimators. Empirical influence functions for maximum likelihood estimators are computed, and based on this information we propose the asymmetric M-estimator (AM-estimator), an M-estimator with asymmetric redescending functions. The performance of AM estimators is assessed, and it is shown that they either compete with or outperform both maximum likelihood and Huber-type M-estimators.
Abstract. Non-rigid image registration using free-form deformations (FFD) is a widely used technique in medical image registration. The balance between robustness and accuracy is controlled by the control point grid spacing and the amount of regularization. In this paper, we revisit the classic FFD registration approach and propose a sparse representation for FFDs using the principles of compressed sensing. The sparse free-form deformation model (SFFD) can capture fine local details such as motion discontinuities without sacrificing robustness. We demonstrate the capabilities of the proposed framework to accurately estimate smooth as well as discontinuous deformations in 2D and 3D image sequences. Compared to the classic FFD approach, a significant increase in registration accuracy can be observed in natural images (61%) as well as in cardiac MR images (53%) with discontinuous motions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.