The high diversity of plant species in the tropics has revealed complex phenological patterns and reproductive strategies occurring throughout the year. Describing and analysing tropical plant phenology, and detecting triggers, demands to consider the circular nature of recurrent life cycle events and the use of appropriated statistical metrics.
Here, we explore analytical pitfalls potentially affecting results of studies that do not consider the circular nature of phenology data when comparing resting and non‐resting systems, especially when accounting for phylogeny. We discuss definitions of the widely used first flowering date and revisit the literature on phylogenetic signal in plant phenology. We compare statistical analyses for tropical and temperate phenology by simulating communities with known phenological and phylogenetic structures.
We demonstrate that ignoring the circular nature of phenological data underestimates the phylogenetic signal in plant phenology. Using the proposed circular transformation for non‐resting tropical ecosystems and resting temperate systems prevented errors, yielding precise comparisons.
Synthesis. The analysis of both non‐resting and resting systems must consider the circularity of phenological events. Circular statistics is the appropriate approach to calculate phenological parameters, identify phylogenetic signal and assess drivers, allowing accurate cross‐comparisons of phenology across environments at large spatial scales.
One outstanding phenotypic character in Homo is its brain evolution. Pagel (Morphology, shape and phylogeny, CRC Press, Boca Raton, 2002) performed a phylogenetic analysis of the evolution of cranial capacity (as a surrogate of brain size) in fossil hominins, finding evidence for gradual evolutionary change with accelerating rate. Since Pagel's pioneering investigation, the hominin fossil record expanded backward in time, new species were added to our family tree, different phylogenetic hypotheses were advanced, and new phylogenetic comparative methods became available. Therefore, we feel it is timely to repeat and expand upon Pagel's seminal paper by including such material and applying novel methodologies. We fitted several evolutionary models to the endocranial volume (ECV) for 21 fossil hominins (including Pagel's original analyses) and estimated phylogenetic signal using different approaches, while accounting for phylogenetic uncertainty. We then applied the phylogenetic signal-representation curve to the data to look for non-stationarity (discontinuities, rate shifts, or presence of different evolutionary patterns in different parts of the phylogeny) in brain size evolution. Our analyses show that, in principle, Pagel's findings are robust to the addition of new data and phylogenetic uncertainty and confirm both the strong phylogenetic signal in brain size and acceleration of ECV evolutionary rates towards the present. However, nonstationarity was also detected in about 11% of the simulations, with two significant evolutionary discontinuities occurring close to the origin of the H. sapiens lineage (H. sapiens, H. neanderthalensis, H. heidelbergensis and H. antecessor) and along the phyletic line leading to H. floresiensis. This study calls upon further investigation of these important moments in Homo evolution, in order to understand the processes underling each of these shifts in brain size evolutionary regimes.
According to the island rule, small-bodied vertebrates will tend to evolve larger body size on islands, whereas the opposite happens to large-bodied species. This controversial pattern has been studied at the macroecological and biogeographical scales, but new developments in quantitative evolutionary genetics now allow studying the island rule from a mechanistic perspective. Here, we develop a simulation approach based on an individual-based model to model body size change on islands as a progressive adaptation to a moving optimum, determined by density-dependent population dynamics. We applied the model to evaluate body size differentiation in the pigmy extinct hominin
Homo floresiensis,
showing that dwarfing may have occurred in only about 360 generations (95% CI ranging from 150 to 675 generations). This result agrees with reports suggesting rapid dwarfing of large mammals on islands, as well as with the recent discovery that small-sized hominins lived in Flores as early as 700 kyr ago. Our simulations illustrate the power of analysing ecological and evolutionary patterns from an explicit quantitative genetics perspective.
1. The increase in online and openly accessible biodiversity databases provides a vast and invaluable resource to support research and policy. However, without scrutiny, errors in primary species occurrence data can lead to erroneous results and misleading information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.