In December 2019, a new type viral pneumonia cases occurred in Wuhan, Hubei Province; and then named "2019 novel coronavirus (2019-nCoV)" by the World Health Organization (WHO) on 12 January 2020. For it is a never been experienced respiratory disease before and with infection ability widely and quickly, it attracted the world's attention but without treatment and control manual. For the request from frontline clinicians and public health professionals of 2019-nCoV infected pneumonia management, an evidence-based guideline urgently needs to be developed. Therefore, we drafted this guideline according to the rapid advice guidelines methodology and general rules of WHO guideline development; we also added the first-hand management data of Zhongnan Hospital of Wuhan University. This guideline includes the guideline methodology, epidemiological characteristics, disease screening and population prevention, diagnosis, treatment and control (including traditional Chinese Medicine), nosocomial infection prevention and control, and disease nursing of the 2019-nCoV. Moreover, we also provide a whole process of a successful treatment case of the severe 2019-nCoV infected pneumonia and experience and lessons of hospital rescue for 2019-nCoV infections. This rapid advice guideline is suitable for the first frontline doctors and nurses, managers of hospitals and healthcare sections, community residents, public health persons, relevant researchers, and all person who are interested in the 2019-nCoV.
C o r r e s p o n d e n c e Detection of Covid-19 in Children in Early January 2020 in Wuhan, China To the Editor: A small number of cases of coronavirus disease 2019 (Covid-19) have been described in children, 1,2 and our understanding of the spectrum of illness is limited. 3 We conducted a retrospective analysis involving hospitalized children in Wuhan, China. From January 7 to January 15, 2020, a total of 366 hospitalized children (≤16 years of age) were enrolled in a retrospective study of respiratory infections at three branches of Tongji Hospital, which are located 14 km to 34 km from one another in central Wuhan (Fig. S1 in the Supplementary Appendix, available with the full text of this letter at NEJM.org). The study was approved by the ethics committee of Tongji Hospital. Among the 366 children, the most frequently detected pathogens were influenza A virus (in 23 patients [6.3%]) and influenza B virus (in 20 [5.5%]). SARS-CoV-2, the virus that causes Covid-19, was detected in 6 patients (1.6%). In
Background: Coronavirus disease 2019 (COVID-19) induces myocardial injury, either direct myocarditis or indirect injury due to systemic in ammatory response. Myocardial involvement has been proved to be one of the primary manifestations of COVID-19 infection, according to laboratory test, autopsy, and cardiac magnetic resonance imaging (CMRI). However, the middle-term outcome of cardiac involvement after the patients were discharged from the hospital is yet unknown. The present study aimed to evaluate mid-term cardiac sequelae in recovered COVID-19 patients by CMRI Methods: A total of 47 recovered COVID-19 patients were prospectively recruited and underwent CMRI examination in this study. The CMRI protocol consisted of black blood fat-suppressed T2 weighted imaging (BB-T2WI), T2 star mapping, left ventricle cine imaging, pre-and post-contrast T1 mapping, and late gadolinium enhancement (LGE). Myocardium edema and LGE were assessed in recovered COVID-19 patients. The left ventricle (LV) and right ventricle (RV) function and LV mass were assessed and compared with normal controls. Results: Finally, 44 recovered COVID-19 patients and 31 normal controls were included in this study. No edema was observed in any patient. LGE was found in 13 patients. All LGE lesions were located in the middle myocardium and/or sub-epicardium with a scattered distribution. Further analysis showed that LGE-positive patients had signi cantly decreased left ventricle peak global circumferential strain (LVpGCS), right ventricle peak global circumferential strain (RVpGCS), right ventricle peak global longitudinal strain (RVpGLS) as compared to non-LGE patients (p 0.05), while no difference was detected between the non-LGE patients and normal controls. Conclusion: Myocardium injury existed in about 30% of COVID-19 patients. These patients had peak right ventricle strain that decreased at the 3-month follow-up. Cardiac MRI can monitor the COVID-19-induced myocarditis progression, and CMR strain analysis is a sensitive tool to evaluate the recovery of left ventricle circumferential contraction dysfunction and right ventricular dysfunction.
This study by Huang et al. demonstrates that lung macrophages of differing ontogeny respond divergently to Mycobacterium tuberculosis infection in vivo. Alveolar macrophages and interstitial macrophages adopt different metabolic states that promote or control M. tuberculosis growth, respectively.
It is a challenge to fabricate graphene bulk materials with properties arising from the nature of individual graphene sheets, and which assemble into monolithic three-dimensional structures. Here we report the scalable self-assembly of randomly oriented graphene sheets into additive-free, essentially homogenous graphene sponge materials that provide a combination of both cork-like and rubber-like properties. These graphene sponges, with densities similar to air, display Poisson's ratios in all directions that are near-zero and largely strain-independent during reversible compression to giant strains. And at the same time, they function as enthalpic rubbers, which can recover up to 98% compression in air and 90% in liquids, and operate between À 196 and 900°C. Furthermore, these sponges provide reversible liquid absorption for hundreds of cycles and then discharge it within seconds, while still providing an effective near-zero Poisson's ratio.
The severity of the pulmonary manifestations of COVID-19 can be quantitatively evaluated from chest CT using a deep-learning method. There were significant differences in lung opacification percentage, as measured by the deep learning algorithm, among patients with different clinical severity. This automated tool for quantification of lung involvement may be used to monitor the disease progression and understand the temporal evolution of COVID-19. Abbreviations ARDS = acute respiratory distress syndrome, COVID-19 = coronavirus disease 19, GGO = ground glass opacity, HRCT = high resolution computed tomography, RT-PCR = reverse transcription-polymerase chain reaction, SARS-Cov-2 = severe acute respiratory syndrome coronavirus 2, SpO2 =pulse oxygen saturation
We describe the organization of a nascent international effort, the Functional Annotation of Animal Genomes (FAANG) project, whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-015-0622-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.